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FOREWORD 
This guide was prepared in response to the identification by the Steel Bridge Group of 
the need for guidance on the determination of the buckling resistance of steel plate 
girders in composite bridges, both during construction and in service.  

The guidance was prepared by David Iles (SCI), with significant input from members of 
the Steel Bridge Group, in particular Chris Hendy (Atkins), Chris Murphy (Flint & 
Neill) and Ian Palmer (Mott MacDonald). SCI is grateful to BCSA for financial support 
during the preparation of the guidance. 
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SUMMARY 
This document provides an overview of the means to determine the buckling resistance 
of steel plate girders in composite bridges, both during construction (the bare steel 
stage) and in service (when the deck slab acts as the top flange).  

The document notes that Eurocode 3 gives principles and general application rules but 
to apply the rules for composite bridges the designer needs to understand how buckling 
behaviour can be represented both in manual calculation and through finite element 
analysis. 

The forms of buckling, for members in compression and in bending, for web panels in 
shear and compression, and local buckling of flange outstands is described and the 
means to determine ‘non-dimensional slenderness’ for each form is presented. It is 
noted that lateral bending of flanges occurs both during construction and in service and 
that the verification process must therefore take account of the interaction between the 
effects of vertical and lateral bending. Suggestions are made for modifications of 
verification criteria in Eurocode 3 (which do not fully cover the effects experienced in 
bridges).  

Recommendations are summarized and examples of buckling modes found in FE 
analysis are given. Finally, the interaction between major axis and minor axis effects 
during the construction stage of the worked example presented in SCI publication P357 
is considered. The lateral bending effects are greatest on the outer girder (which is not 
the most heavily loaded girder and the effects were thus not considered in detail in 
P357) and the calculations show how the combined effects can be verified. 
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1 INTRODUCTION 

The design verification for bridge structures almost invariably involves at some stage 
the determination of the buckling resistance of members or elements of the structure. 
The design resistances are verified against design effects (internal forces, moments etc. 
due to the actions for the design situation) determined by a structural analysis.  

For the design of steel structures to Eurocode 3[1}, EN 1993-2 permits the internal forces 
and moments to be determined by first order analysis (not taking into account the 
deformation of the structure) if the structure is not sensitive (as defined in EN 1993-2) 
to elastic instability in a global mode (meaning in-plane instability of the members). The 
effects of out-of-plane instability of the members are then taken into account in 
determining the resistances of the members. 

Beam type bridge structures are not sensitive to in-plane instability in a global mode and 
thus only the effects of out-of-plane stability need to be considered. (Arch structures 
may be sensitive to in-plane-instability - see further comment in Section 3.6, although 
arches are generally outside the scope of this report.) However, when several beams are 
connected by bracing, out-of-plane instability of one beam may lead to overall 
instability of the whole structure and the global behaviour of the structure does need to 
be considered; this is particularly the situation during construction when bare steel 
beams are paired together. 

Eurocode 3 gives principles and general application rules for determining buckling 
resistance of members, including rules that can take account of global out-of-plane 
buckling, but to apply the rules the designer needs to understand buckling behaviour, 
how it can be represented in analysis and the limitations of analytical methods.  

Primarily, this report provides an overview of buckling behaviour for steel plate girders 
(acting alone, without any composite action) and discusses the means to determine 
buckling resistance. Comments on the buckling resistance of composite slab-on-beam 
bridges is given in Section 7. 

The report has been produced under the guidance of the Steel Bridge Group, in 
particular with the assistance of Chris Hendy (Atkins) and Chris Murphy (Flint & 
Neill). Thanks are expressed to both Flint & Neill, and Atkins for permission to include 
the examples of FE models in Section 11. 
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2 BUCKLING OF STRUCTURAL MEMBERS 

Buckling is the phenomenon when a member or part of a member displaces laterally or 
out of its plane due to compressive forces or stresses. The displacements are associated 
with flexural stresses whose magnitude depends on the slenderness of the member. The 
resistance of the member (its buckling load) is limited by these flexural effects. 

The various modes of buckling are described below. Expressions for evaluating elastic 
critical buckling loads are discussed in Section 3 and the determination of buckling load 
according to member slenderness and material strength are discussed in Section 4. 

2.1 Buckling modes for members 
Structural members without intermediate restraint along their length (or with only 
flexible intermediate restraint) can buckle when subject to either compression or 
bending. There are four potential modes of buckling for individual members: 

Under axial compression: 

x Flexural buckling 

x Torsional buckling 

• Flexural-torsional buckling 

Under bending 

• Lateral torsional buckling 

In addition, where torsional restraint (about a longitudinal axis) is provided at a specific 
position in the cross section, distortional buckling can occur (the shape of cross section 
becomes distorted) under axial compression or bending. 

2.2 Flexural buckling 
Flexural buckling is perhaps the most easily recognized mode of buckling for members. 
If one considers a pin-ended member that is nominally straight but which has a small 
(out-of-straight) imperfection, the out-of-straightness increases under axial 
compression. The limiting resistance (buckling load) is reached, for a steel member, 
when the combined axial and flexural stresses reach yield stress at some point in the 
cross section (for a Class 3 cross section) or the bending moment reaches the plastic 
bending resistance as modified by the axial force (for a Class 1 or 2 cross section).  For 
an I-section member, unrestrained against displacement in any transverse direction, the 
displacements and flexural stresses due to bending about the minor axis of the cross 
section are greater than about the major axis and thus the member is said to  buckle 
about its weak axis, as shown in Figure 2.1. 
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Class 3 section Class 1 or 2 section 
 
Stress variation at buckling load 

 
Figure 2.1 Flexural buckling 

In steel bridges, flexural buckling is usually only of concern for trusses (where chords 
and diagonals are in compression) and for bracing members that are subject to 
compression. 

In composite bridges, flexural buckling is normally only of concern for bracing 
members. (In an integral bridge, the composite deck will be subject to a modest axial 
force; flexural buckling will not be the governing mode but the axial stresses, and the 
interaction of buckling resistances, will need to be included when considering the 
buckling of the bottom flange.) 

2.3 Torsional and flexural-torsional buckling 
Doubly symmetric sections can buckle in a torsional buckling mode, involving only 
twist about their longitudinal axis: for sections such as a cruciform section the buckling 
load may be less than that for flexural buckling, if the member is short, Torsional 
buckling is shown in Figure 2.2. Such cross sections are rarely used in bridges. 

For monosymmetric sections and asymmetric sections, torsional and flexural buckling 
modes are linked and in some cases may occur at a lower load than flexural buckling 
about the minor axis. In bridges, these modes of buckling are only relevant to angle and 
channel bracing members. 

For a detailed discussion of torsional and flexural torsional modes, see Hendy and 
Murphy[2}. 
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Figure 2.2 Torsional buckling of a doubly symmetric cruciform section 

2.4 Lateral torsional buckling 
Lateral-torsional buckling is a frequent consideration for the design of steel I-section 
members without intermediate restraint. In a member that is bent about its major axis, 
the compression flange will tend to buckle laterally: the flange is effectively a 
compression member (with a small initial imperfection) that is only free to buckle in 
one direction. But because the flange is connected to the web, it can only displace by 
twisting the cross section and by imposing a smaller lateral displacement of the tension 
flange. The shape of the buckling mode is shown in Figure 2.3. 

 
 
Figure 2.3 Lateral torsional buckling 

The flanges of I section steel girders are usually very slender in transverse bending over 
their span and consequently the slenderness of individual unbraced girders against 
lateral torsional buckling is high; the buckling resistance of the member in bending 
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(about its major axis) is therefore much less than the bending resistance of the cross 
section. 

2.5 Distortional buckling 
Where a bridge deck is formed by a reinforced concrete slab on top of steel I-section 
girders and acting compositely with them, lateral buckling of the bottom flanges can 
occur when they are subject to compressive stresses due to bending (or due to 
compression, although in practical situations axial force alone is too small to lead to 
buckling). Whilst it is possible to consider this situation as a series of Tee sections, side 
by side, that could buckle in a lateral torsional buckling mode, the continuity of the slab 
prevents all lateral displacement of the slab and, more significantly, provides a flexible 
torsional restraint (about a longitudinal axis) at the top of the web. The mode of 
buckling then becomes a lateral distortional mode, as shown in Figure 2.4. 

 
 
Figure 2.4 Distortional buckling (hogging region of continuous composite deck) 

The buckling mode for a half-through U-frame bridge is effectively the inverse of the 
above mode; the stiffness provided by frequent vertical web stiffeners and cross girders 
is fundamental to the U-frame stiffness and thus the restraint to the (top) compression 
flange.  

2.6 Local buckling 
In addition to the buckling of the member as a whole, slender flanges can buckle locally 
under compression and slender webs can buckle under compression or shear.  

Flange outstands tend to buckle in a single half wave over the length between out-of 
plane restraints, each flange displacing in opposite directions. (Only if there were 
significant rotational restraint provided by a thick web to a thin flange would shorter 
wavelengths occur.) This is effectively a torsional buckling mode and this local 
buckling is generally avoided by limiting the outstand to thickness ratio, which ensures 
that the elastic critical bucking stress is sufficiently above the yield stress that yield 
strength can be developed. 

The compression zones of thin web panels in bending tend to buckle as a series of 
waves along the beam, as shown in Figure 2.5. Where there are closely spaced 
transverse stiffeners, the half wavelength is restricted to the distance between transverse 
stiffeners. 
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Figure 2.5 Compression buckling of a web in bending (top flange omitted for clarity) 

Web panels in shear tend to buckle with waves extending across the diagonal of the web 
panel, effectively creating ‘ripples’ that align with the principal tensile stress. With the 
thin webs that are typically used in bridges, the elastic buckling load in shear is usually 
significantly less than the plastic shear resistance of the web. Consequently, the design 
strength of the web often relies on post-buckling behaviour and the shear resistance will 
exceed the elastic critical load. 
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3 ELASTIC CRITICAL BUCKLING  

3.1 General 
To determine the buckling resistance of a real, imperfectly straight, member of limited 
material strength it is necessary to consider first the elastic critical buckling force (or 
moment) for a perfectly straight member. The need for this value is best illustrated with 
reference to flexural buckling of a non-straight compression member. 

Under the action of a compressive axial force, the cross sections along the length of the 
member are subject to both the compression force and a bending moment that is equal 
to the product of the offset of the cross section centroid from the axis of the member and 
the compression force. The bending moments result in increased out-of-straightness 
which in turn increases the bending moments, and so on. (This is sometimes referred to 
as the P-G effect.) This is illustrated in Figure 3.1, in which the initial out-of straight is 
e0 and the out-of-straight under compression is GN. 

  
 
Figure 3.1 Flexural buckling 

For small values of out-of straightness (i.e. such that the basic geometry is not 
significantly altered), the deflection when under compression is given by: 

� �cr

0
N 1 NN

e
�

 G  

Where Ncr is the elastic critical force for flexural buckling (sometimes referred to as the 
Euler load). 

The elastic limit is reached at an extreme fibre when the sum of the axial stress and the 
bending stress reaches yield, i.e. when: 

y
N f

W
N

A
N

 �
G  

The value of the elastic critical force is thus essential to determining the buckling 
resistance of the member. Its value is dependent on the member geometry and material 
stiffness (modulus of elasticity) but the strength of the material does not affect this 
theoretical critical value. 

Sections 3.2 and 3.3 describe the theoretical derivation of elastic critical buckling forces 
and moments for flexural buckling and lateral-torsional buckling. Elastic critical forces 
and moments can also be determined by first order elastic finite element analysis, as 
discussed in Section 3.5. 

N N e0N N 0

GN
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3.2 Flexural buckling 
The derivation of the ‘buckling load’ for a uniform pin-ended compression member is a 
straightforward task that is explained in detail in many texts.  

The buckling load is referred to in Eurocode 3 as the elastic critical buckling force and, 
for a pin ended strut, is the axial force at which, for any lateral displacement, the 
curvature at any point due to that displacement equals the curvature due to a moment 
that is the product of the axial force and the displacement at that point. (It represents the 
situation when the stiffness due to any lateral force falls to zero.) For the model shown 
in Figure 3.2, this situation is expressed by the differential equation: 

0
d
d

2

2
 �

EI
Ny

x
y  

The lowest solution to this expression, for a simple sinusoidal flexural displacement is: 

2

2

cr L
EIN S

  

Where E is the modulus of elasticity and I is the second moment of area of the member 
about the minor axis. 

The elastic critical buckling force for flexural buckling Ncr is often referred to as the 
Euler load. 
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Figure 3.2 Flexural buckling

It may be noted that there are other solutions to the differential equation, for harmonics 
of the buckling shape. For example, the first harmonic has two sine waves and the 
elastic critical buckling force for that mode is four times that for the fundamental mode. 
Such harmonics will be revealed by the FE analysis discussed in Section 5.3. 

Also of interest are the solutions for one or both of the ends fixed against rotation. 
These solutions may be expressed as: 

� �2
2

cr
kL

EIN S
  

where k = 1 for both ends pinned, k = 0.5 for both ends fixed and k = 0.7 for one end 
pinned, one end fixed.  

The product kL is often referred to as the effective length for buckling. The Eurocode 
uses the symbol Lcr for this length, associated with Ncr. 

Solutions can also be found for flexible end restraints and for cantilevers, all of which 
can be expressed in terms of an effective length kL. 
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3.3 Lateral torsional buckling 
For lateral torsional buckling, a similar approach can be adopted to determine an 
expression for the elastic critical buckling moment, although the algebra is more 
complex. 

For a uniform doubly symmetric beam (such as an I-beam) and for a constant bending 
moment along its length, the elastic critical buckling moment can be expressed as: 

� �
� �

z

z

EI
GIkL

I
I

k
k

kL
EIM 2

T
2

z

w

w
2

2

cr
S

�¸̧
¹

·
¨̈
©

§S
  

where 

E is the modulus of elasticity (E = 210000 N/mm2) 
G is the shear modulus (G = 80770 N/mm2) 
Iz is the second moment of area about the minor axis 
IT is the St Venant torsional constant 
Iw is the warping constant 
L is the beam length between points which have lateral restraint 
k and kw are factors allowing for end restraint 

Where the moment is not uniform, the value is increased by multiplying by a factor C1. 
Values for C1 are given in numerous sources, though the values have typically been 
determined by some process of iterative analysis and are not exact (different sources 
may give slightly different values).  

Other algebraic expressions are available for sections that are not doubly symmetric, 
although they are more complex. No algebraic solutions are available that would take 
account  of flexible end or intermediate restraints or non-uniform members. 

Where algebraic solutions are not available, recourse can be made to finite element 
modelling (see Section 3.5) or possibly to empirical rules based on an equivalent strut or 
an effective length concept (see Section 5.2). 

3.4 Local buckling of plate elements 
The flanges and webs of members are susceptible to local buckling due to compressive 
effects and these elements have an elastic critical buckling stress that is given by 
established theory of plate behaviour. 

3.4.1 Plate elements in compression 
The elastic critical buckling stress of a plate element in compression is given by: 

� �
2

2

2

cr )112
ʌ

¸
¹
·

¨
©
§

�
 

b
tEK

Q
V  

In which K is a parameter that depends on the boundary conditions and the variation of 
stress across the width of the panel. Values for a wide range of situations are given in 
Bulson[3] and values for some specific cases are given in EN 1993-1-5. 
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For long plates supported on both edges and subject to uniform compression, K = 4. 
This situation corresponds to web panels with widely spaced transverse stiffeners when 
the member is subject to axial force only. 

For long plates supported on both edges and subject to pure bending (i.e. stress varies 
from compression at one edge to equal tension at the other), K = 23.9. This situation 
corresponds to web panels in symmetric beams subject to bending only. 

For long plates supported only at one edge, with no rotational restraint at that edge, 
K = 0.43. This situation corresponds to flange outstands connected to thin deep web 
panels.  

3.4.2 Plate elements in shear (web panels) 
The theoretical approach to shear buckling of rectangular web panels generally 
considers the buckling of a panel between transverse web stiffeners. The solution is 
expressed similarly to that for panels in compression: 

� �
2

2

2

cr )112
ʌ

¸
¹
·

¨
©
§

�
 

b
tEK

Q
W  

In which 

2434.5 I� K  for 1tI  or 

434.5 2 � IK  for 1�I  

I = a/b (the aspect ratio); a and b are the panel height and length 

3.5 Solution by Finite Element Analysis 
Where it is not possible to isolate uniform structural components, the loading on the 
components is complex or the interaction between components makes it difficult to 
determine boundary conditions for the critical components, then recourse can be made 
to finite element analysis software that can determine elastic critical buckling loads 
using matrix analysis.  

First order analysis software will determine buckling loads by considering a particular 
loading situation and evaluating the eigenvalues for the stiffness matrix.  

Each eigenvalue has a corresponding eigenvector that defines the particular buckling 
mode associated with that value. The eigenvalues thus represent the critical buckling 
loads for each possible mode of buckling. Each eigenvalue gives the multiple of the 
applied loading at which the structure buckles in that particular mode and thus it is only 
the lowest values that are of relevance. 

To carry out a meaningful FE analysis, shell elements must be used, preferably for all 
the structural elements but at least for those elements that are susceptible to buckling. 
The mesh size must be sufficiently small that the buckling mode can be modelled. For I-
section plate girders, four 4-noded shell elements across the flange (or two 8-noded 
elements), with an aspect ratio of not more than about 2 (or 4 for 8- nodded elements) 
will usually give sufficient accuracy for overall buckling. For local buckling at least 8 
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nodes per half wavelength will be needed (a coarse mesh will overestimate the local 
buckling load but this will not matter if local buckling is not of concern). Experience in 
analysis of similar structural configurations will aid the choice of an appropriate mesh 
and a sensitivity analysis can be used to confirm the accuracy of the chosen mesh size or 
to show what refinement is needed to improve accuracy. 

First order buckling analysis will be adequate for determining elastic critical buckling 
loads for most situations, which means that material non-linearity and geometric 
deformation are not taken into account. Note, however, that since the software for 
determining elastic critical loads generally uses stress stiffness matrices, which are 
based on initial linear stress and displacements, the destabilizing effect of any loads 
applied above the member centroid is automatically taken into account.  

The effects of initial imperfections are not considered in first order analysis. These 
effects are taken into account by the use of buckling curves, as discussed in Section 4. 

3.6 Second order analysis 
A full second order analysis takes account of material non-linearity and geometric 
deformation. To carry out such an analysis to determine failure load in accordance with 
Eurocodes requires complex software. It can determine failure loads directly, without 
reference to buckling curves, but the model does need to incorporate initial 
imperfections that are equivalent to those assumed in the Eurocode design rules; it 
should be noted that the design imperfections exceed the geometrical limits given in EN 
1090-2 because the former also include the effects of residual stresses through 
additional equivalent geometric imperfection. Evaluation of appropriate imperfections 
for the analysis requires a thorough understanding of the design basis in Eurocode 3.  

Second order analysis is essential when the buckling behaviour is influenced by the 
modified geometry of the structure under load. This effect is most easily illustrated by 
considering an arch and is shown schematically in Figure 3.3. First order buckling 
analysis would only give eigenvectors for buckling modes related to the original 
geometry. However, the axial strain in the arch members will cause the arch to flatten, 
which increases the axial forces and strains. (In a sufficiently flat arch, the arch will 
snap through.) The true buckling load is thus only given by a second order analysis. 

Second order analysis and the design of arches is outside the scope of this report.  

 

First order buckling mode

Second order 
buckling mode

First order buckling mode

Second order 
buckling mode

 
 
Figure 3.3 Buckling of an arch 
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4 BUCKLING RESISTANCE OF REAL 
MEMBERS 

The theoretical solutions in Sections 3.2 to 3.5 take no account of material strength, nor 
of any out-of-straightness of the structural components. Real members are not perfectly 
straight and, as noted in Section 3.1, as compressive load is applied, the members will 
deflect, increasing the out-of-straightness and causing additional bending stresses. Yield 
will therefore be first attained at an extreme fibre at a lower load than if there were no 
imperfection. Once yield is reached, the bending stiffness decreases and the rate of 
deflection with load increases; yield at an extreme fibre thus represents at least an initial 
limit to the resistance of the member, although in some cases plastic straining can allow 
a higher resistance to develop. 

4.1 Members in compression  
For a compression member with a sinusoidal initial imperfection, the relationship 
between deflection and stress given in Section 3.1 can alternatively be expressed as the 
well-known Perry-Robertson formula.  
� �� � cracraya VKVVVV  �� f  
Where 
Va is the axial stress when yield is reached at an extreme fibre (= N/A) 
fy is the yield stress 
Vcr is the axial stress at the Euler load ( ALEI 22ʌ  = Ncr / A) 
K is an imperfection parameter (related to the peak value of the imperfection and to 

the cross section properties) 

This quadratic equation can be re-expressed by making the stress terms ‘non-
dimensional’, dividing them by the yield stress fy thus: 
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The ratio Va/fy may be expressed as a reduction factor for buckling F and the ratio Vcr/fy 
may be expressed in terms of a ‘non-dimensional slenderness’ O , such that 

2
ycr 1 OV  f . See discussion of Eurocode definitions in Section 4.2. 

The solution of the quadratic equation can then be expressed, after some algebraic 
manipulation as: 

22

1

OII
F

��
  

In which > @215.0 OKI ��  

The greater the imperfection parameter, the smaller the value of the reduction factor. 

If a fixed value of imperfection is presumed, independent of non-dimensional slenderness, 
the above expression gives a single buckling curve, as shown in Figure 4.1. 



ED008-D01.doc 13 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3

SlendernessCO��

R
ed

uc
tio

n 
fa

ct
or

 F

Buckling curve
Elastic buckling
'Squash load'

 
 
Figure 4.1 Simple buckling curve 

The above curve represents the limiting situation when yield is reached at an extreme 
fibre. For very slender members, this represents failure but, at low slenderness, 
plastification and strain hardening will increase the load that can be sustained and this 
has been demonstrated in tests. To take advantage of this improved performance, it is 
accepted practice to equate the member resistance to the resistance of the cross section 
up to a certain limiting slenderness and thereafter to apply a reduction that is related to 
the slenderness.  

In Eurocode 3, the imperfection parameter is generally taken as � �2.0�OD  where D is a 
parameter that has been determined by test. The resulting buckling curve thus has a 
‘plateau’ up to a slenderness of 0.2. Curve-fitting to test results over very many years 
has established a range of values of D that represent the state of residual stress (due to 
rolling and welding) and out-of-straightness found in structural steel members, 
depending on cross section geometry and whether it is a rolled section or one fabricated 
by welding. Five different values of imperfection factor, and thus five buckling curves, 
are defined for compression members, as shown in Figure 4.2.  
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Figure 4.2 Compression buckling curves in Eurocode 3 
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4.2 Non-dimensional slenderness 
For compression members, Eurocode 3 defines the non-dimensional slenderness as: 

cr

y

N
Af

 O  for Class 1, 2 and 3 members and 

cr

yeff

N
fA

 O  for Class 4 members (EN 1993-1-1, 6.3.1.3). 

Where Ncr is the elastic critical buckling load for the member, determined taking 
account of end conditions, intermediate restraints etc. 

In general terms this means: 

load critical Elastic
section cross  theof Resistance

 O  

This general definition can be extended to the slenderness of members in bending (in 
relation to LTB), to plate panels in compression and to web panels in shear. Thus: 
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 O  (EN 1993-1-1, 6.3.2.2) 
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  (EN 1993-1-5, 4.4) 
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  (EN 1993-1-5, 5.3) 

A similar approach can be taken for a whole structure, taking the complete system of 
girders and deck, to determine a global non-dimensional slenderness at which buckling 
occurs. The ‘global slenderness’ is then given by: 

opcr,

kult,
op D

D
O   

Where 

Dult,k is the minimum load amplifier to reach characteristic resistance in the most 
critical cross section, considering only in-plane behaviour 

Dcr,op is the minimum load amplifier to reach elastic critical load due to lateral or 
lateral torsional buckling. 
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4.3 Members in bending 
Like members in compression, the resistance of members in bending to lateral torsional 
buckling depends on the non-dimensional slenderness and an allowance for initial 
imperfections. Although it is not as easy to model the effects of notional imperfections, 
such as the sine wave out-of-straightness in the Perry Robertson model, a similar 
approach can be adopted. 

For the magnitude of the imperfection parameter, there is no simple out-of-straightness 
dimension equivalent to that for compression members but curve fitting to test results 
has led to the adoption in Eurocode 3 of the same values of D as for compression 
members. However, Eurocode 3 chooses a different relationship between the 
imperfection parameter and non-dimensional slenderness for rolled sections and welded 
sections. No curves are actually shown in EN 1993-1-1 for LTB but the relationships 
are defined. 

For doubly symmetric I and H rolled sections, tests have shown that the effective 
plateau is longer and that the reduction factor is slightly better (than with the flexural 
buckling curve) at higher slenderness. As implemented by the UK NA, the three curves 
for LTB are as shown in Figure 4.3. 

For welded sections, the LTB curves are the same as the two lowest curves for flexural 
buckling, as shown in Figure 4.4. 

For bridges, the members are normally welded sections and thus only the second of 
these two sets of curves is used. 
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Figure 4.3 LTB buckling curves for rolled sections (EN 1993-1-1 and the UK NA) 
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Figure 4.4 LTB buckling curves for welded sections (EN 1993-1-1 and the UK NA) 

4.4 Plate elements 

4.4.1 Elements in compression 
Generally, slender plate elements have a considerable post-buckling reserve of strength. 
This reserve can be appreciated as a redistribution of stress toward the supported 
boundaries - for internal elements the stresses are higher at the edges than at the middle, 
for flange outstands, the stress is higher at the web than at the tip. 

Although Eurocode 3 does not provide ‘buckling curves’ for plates in compression, 
EN 1993-1-5 does give values of ‘effective areas’ based on a reduction factor U that is 
equivalent to the reduction factor for member resistance. Values of U for internal and 
outstand elements are shown in Figure 4.5. The Eurocode values have been validated by 
reference to test results. 
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Figure 4.5 Reduction factor for plates (EN 1993-1-5) 

Also shown on the Figure are the limiting plate width/thickness ratios for Class 3 
elements (i.e. those where the full area may be used in determining elastic resistance of 
the member). The Figure shows that at slendernesses above about 1.1 the plate elements 
can resist a load in excess of their elastic critical buckling load.  
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4.4.2 Webs in shear 
Imperfections in web panels have a different effect upon the design shear resistance (the 
Perry Robertson model is not applicable) and instead the HĘglund model, with rotation 
of principal stresses post-buckling, enables, for thin web panels,  the mobilisation of a 
design resistance that is significantly greater than the elastic critical buckling load. EN 
1993-1-5 expresses the reduction factor on plastic shear resistance in relation to the non-
dimensional slenderness, as shown in Figure 4.6. 
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Figure 4.6 Reduction factor for shear resistance of webs 

It should be noted that the buckling curves for shear are based on test results that were 
influenced by the boundary restraint provided by the flanges and by rigid end-post 
systems (where these exist and are sufficient to enhance the restraint of the web panel). 
If a fine mesh analysis of a web in shear were to be attempted, no rotational restraint 
should be provided if the Eurocode 3 buckling curve is then to be applied to the elastic 
buckling load. 
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5 DETERMINING NON-DIMENSIONAL 
SLENDERNESS 

5.1 Accounting for instability 
In almost all design situations, the design buckling resistance of members in bridges 
will be verified according to clause 6.3 of EN 1993-2. The calculation of buckling 
resistance then depends on the determination of a reduction factor (to be applied to the 
resistance of the cross section), which depends on the non-dimensional slenderness of 
the member. As explained earlier, the non-dimensional slenderness depends on the 
elastic critical buckling force or moment. In some cases the slenderness can be readily 
calculated manually but, for LTB slenderness in particular, ‘simple’ manual 
approximations may be too conservative and it will be worthwhile to undertake a FE 
analysis for a more accurate evaluation. 

5.2 Manual calculation of slenderness 

5.2.1 Flexural buckling 
Clause 6.3.1.3 of EN 1993-1-1 gives a simple expression for non-dimensional 
slenderness for flexural buckling that avoids the explicit calculation of the elastic 
critical force: 

1

cr 1
O

O
i

L
  

where Lcr is the critical buckling length, i is the radius of gyration about the relevant 
axis and y1 fES O . 

This expression presumes that the member has a constant cross section, with all the 
axial forces applied at the ends and the end conditions known with such confidence that  
the buckling length Lcr can be reliably assumed. (Lcr is effectively the same as kL in 
Section 3.2.) Where such presumptions do not apply, conservative assumptions can be 
made (such as ignoring beneficial influences that cannot be properly quantified) but it 
may be better to carry out a FE analysis if conditions are significantly non-uniform or 
the effective stiffness of the end restraints can only be determined by modelling. 

5.2.2 Lateral torsional buckling 
No simple expression is given for non-dimensional slenderness for lateral torsional 
buckling. Its value is to be derived from the elastic critical buckling moment for the 
member: as mentioned above and is given by: 

cr

y
LT M

Wf
 O  

There are two methods for determining LTB slenderness manually, without the need to 
determine elastic critical moment. Both are based on empirical simplifications that give 
conservative values of slenderness. 
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Equivalent strut method 
EN 1993-2, 6.3.4.2 builds on the simplified assessment method that is introduced (for 
buildings) in EN 1993-1-1, 6.3.2.4. The method considers the length of the compression 
flange between effective restraints (to that flange) and treats it as a compression 
member to derive slenderness. The compression member is taken to comprise the flange 
and one third of the adjacent depth of web in compression. Account is taken of variation 
of axial force along that notional member and of intermediate flexible restraint provided 
by U-frame action. The method is relatively easy to apply and not overly conservative 
(at least for the composite stage, in the regions adjacent to internal supports). 

Effective length method 
The other alternative is available through the NA to BS EN 1993-2, which refers to 
PD 6695-2[4] for complementary information. That document gives the slenderness for a 
number of restraint situations in the form: 

w
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The parameters in this expression (which are all defined in the PD) take account of 
torsional and warping properties of the cross section and an ‘effective length’ that 
depends on the stiffness of the end and intermediate restraints, as well as variation of 
bending moment and bending resistance of the cross section. The expressions for the 
various parameters have been taken from the rules in BS 5400-3, re-expressed in 
Eurocode terminology and symbols. It is generally accepted that the values of 
slenderness given by these expressions are conservative.  

For the general case of a non-uniform member, there is no explicit expression that will 
give the value of Mcr and thus the LTB slenderness. The most effective means to derive 
its value is through a finite element elastic critical buckling analysis of the member or 
structure. 

5.3 Determining slenderness through FE elastic buckling 
analysis (first order) 

The primary result of an FE buckling analysis is a series of eigenvalues representing the 
load factors (multipliers on the magnitude of the given loading) at which the various 
buckling modes are critical (such as the higher harmonic modes referred to for flexural 
buckling in Section 3.2). The results are normally presented in ascending order and only 
the lowest modes are of interest. However, the effective design resistance is not 
necessarily given by the lowest eigenvalue. To determine the design resistance, the 
designer must consider not just the eigenvalues but also the associated eigenvectors 
(which reveal the mode shape): when there are slender plate elements, local buckling 
can occur at a lower load than member buckling but the local buckling does not 
represent failure and does not determine the slenderness that is needed in the evaluation 
of design resistance of the member. 

5.3.1 Compression members 
Where it is necessary to determine Ncr by FE analysis (for example when the member is 
non-uniform) representing the member as a series of beam elements will usually give a 
sufficiently reliable result. Typically, the member should be divided into at least 20 
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elements over the buckling length. The use of shell elements will give similar accuracy 
for overall buckling and may also show local buckling effects. (Local buckling can 
generally be ignored when the elements of the cross section comply with the limitations 
of EN 1993.) 

5.3.2 Members in bending 
To analyse members in bending, shell elements should be used for the webs and the 
flanges. Generally, the FE mesh size should be sufficiently fine that the model is able to 
represent torsional effects in the elements and the overall buckling modes (see comment 
in Section 3.5 on choice of mesh). The mesh will also be able to model the local 
buckling of the compression flange and the webs in bending, although not with accuracy 
unless the mesh is fine.  Shear buckling of the web will not normally be modelled as it 
would require a much finer mesh than is appropriate for determining member buckling.  

The top flange in a midspan region may well be proportioned such that it is close to the 
outstand limit for Class 3, when its slenderness is about 0.75. If the slenderness for LTB 
were the same as this value (and thus the eigenvalues for the two buckling modes would 
be the same), then the reduction factor for LTB (assuming a welded section and 
buckling curve d) would be about 0.6 (see Figure 4.4). In practice, economic design 
would probably require a ‘better’ (higher) reduction factor and thus a lower slenderness 
and a greater elastic critical buckling load. In such a situation, the eigenvalue for LTB 
(the ratio of elastic critical load to load applied to the model) would be higher than that 
for flange buckling. The eigenvalue of interest to the designer is therefore not the lowest 
value but the one relevant to the first global LTB mode. 

Similarly, the web slenderness in midspan regions may well be close to the class 3 limit 
(at a corresponding slenderness of about 0.9, as can be seen in Figure 4.5) or even class 
4 (with a slenderness of 1.0 or greater). The elastic critical buckling load of the web 
panel in bending may thus be well below that for LTB but will not be the limiting 
criterion. 

The appearance of non-limiting buckling modes is illustrated in Figure 5.1 for a typical 
FE model. It can be seen that a web buckling mode has developed (the buckling has led 
to some associated out-of-plane flange displacement, although this is not a flange 
buckling mode) but there is no LTB at this stage. In a multi-beam model with varying 
geometry in each beam, there may well be very many similar non-limiting modes. Close 
examination of all the lowest eigenvalues and eigenvectors is needed to identify the 
mode that will correspond to failure of the structure. Separate analyses will be needed 
for each design situation. (Note that the eigenvalue found for this local buckling mode 
in the model illustrated will exceed the ‘true’ value because the mesh is coarse in 
relation to the half wavelength for local buckling. See example in Figure 11.4 for a 
better modelling of local buckling, using a finer mesh.) 
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Figure 5.1 Local web buckling in a FE model 

5.3.3 Derivation of slenderness from load factors 
Since the result of the FE analysis is a load factor that represents a multiple of the 
applied loading at which elastic critical buckling occurs, it is a relatively straightforward 
matter when the member is subject to compression alone or bending alone to multiply 
the design effect at the critical location by the load factor to give either Ncr or Mcr, as 
appropriate, and thus to calculate the non-dimensional slenderness (as discussed in 
Section 4.2). 

Note however, that Network Rail requires[5] that, where finite element modelling is used 
to determine buckling effects, a value of JSd = 1.1 must be applied in the calculation of 
the effects of actions (this is in addition to any allowance for modelling that is included 
in the partial factors JG and JQ – see BS EN 1990, clause 6.3.2, which refers to them 
generally as JF,I ). 

Where the member is subject to combined axial force and bending, the general approach 
of EN 1993-1-1, 6.3.4 should be used. This determines a ‘global’ non-dimensional 
slenderness opO , depending on the load factor and the utilization of the cross section 
under combined loading. From that global slenderness reduction factors for 
compression and bending may either be determined and applied separately (since the 
buckling curves may be different for each effect, the reduction factors may be different), 
or be taken as the lower value and applied to both effects. 
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6 OTHER CONSIDERATIONS 

6.1 Design of lateral and torsional restraints 
Neither the manual methods nor the FE analysis give design forces for lateral and 
torsional restraints. The rules in EN 1993-2, 6.3.4.2 should be used to determine the 
requirements for such restraints. 

6.2 Lateral bending and warping 

6.2.1 Individual steel beams 
When there are lateral forces, such as wind forces at the bare steel stage, interaction 
between major and minor axis bending must be considered. There is no interaction 
criterion in EN 1993-1-1 for combined bending without axial force but with NEd = 0, the 
criteria in 6.3.3 reduce to: 
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The expression indicates a linear interaction and demonstrates that minor axis bending 
is not destabilizing and does not need to be amplified. The interaction criteria in EN 
1993-1-1 were derived for doubly symmetric I-sections but bridge girders are typically 
only monosymmetric and hence lateral loads applied other than at the shear centre will 
cause a twist as well as a moment. Because this twist from transverse loads is not 
usually calculated, it has therefore been suggested[6] that a more conservative criterion 
should be used for monosymmetric sections when the torsion is not explicitly 
considered: 
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When there are torsional effects, such as due to the support of cantilever falsework or in 
girders curved in plan, these also need to be included in the interaction criteria. 
EN 1993-1-1 does not provide such criteria but EN 1993-6 does provide the following 
criterion (re-expressed in terms of warping moment, rather than bi-moment): 
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in which: 

Cmz is the equivalent uniform moment factor for bending about the z-axis according 
to EN 1993-1-1 Table B.3. (For a simply supported beam with a parabolic 
bending moment diagram due to UDL Cmz = 0.95; for a triangular bending 
moment diagram due to a single point load Cmz = 0.9.)  

kw  = 0.7 – 0.2 Mw,Ed/Mw,Rd 

kzw  = 1 – Mz,Ed/Mz,Rd 

kĮ  = 1/[1 – My,Ed/Mcr] 
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Mcr  is the elastic critical moment about the y-axis. 

Mw,Ed  is the warping moment in one flange 

Mw,Rk  is the characteristic bending resistance of the (weaker) flange. 

kw can conservatively be taken as 0.7;. Cmz and kzw can conservatively be taken as 1; but 
kĮ does need to be evaluated. 

However, this expression has again been derived for doubly symmetric sections and it is 
again suggested that the kĮ factor should be applied to the Mz term as well, which would 
result in: 
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6.2.2 Paired steel beams 
The above criteria are expressed for single members but can be used for paired girders 
(without plan bracing) if FLT has been determined for that configuration. 

Alternatively, the lengths of compression flange between bracing positions may be 
treated as ‘simple struts’, in a similar manner to the general method in EN 1993-2, 6.3.4. 
The effective area of the simple strut is that of the compression flange and one third of 
the depth of web in compression. The strut is considered to be subject only to axial 
force and lateral bending and the interaction criteria are thus expressed in the same 
manner as for flexural buckling with bending, as follows: 
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Where 

NEd is the design compression force in the effective strut section 

NRd is the compression resistance of the effective strut section 

Ncr,z  is the elastic critical force for the effective strut, given by 
Ncr,z = Mcr × Ae /Wy ( = Ae fy /CO2 ) 

F = FLT determined for the paired girders 

Mcr is the elastic critical moment for the member, determined for the paired girders 
(alternatively, may be expressed in terms of CO ) 

Wy is the elastic section modulus of the member 

Ae  is the area of the effective strut 

Mz is the maximum value of bending of the flange about the z-z axis (in its plane) 
within the length of the effective strut 

Mz,Rd  = Wzfy/JM1 (the elastic bending resistance of the flange, using the JM1 factor) 

6.2.3 Composite beams 
The strut model of the bottom flange is ideal for verifying the resistance of the bottom 
flange in hogging regions. Rules are given in EN 1993-2. 6.3.4 for determining the 
slenderness of the effective strut  that represents the bottom flange and part of the web 
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of the composite section. However, the rules need to be supplemented when there is 
lateral bending of the flange (in its plane) and the bending effects need to be amplified. 
The following interaction criterion is suggested: 
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Where 

NED is the design compression force in the effective strut section (determined from 
the stresses due to summation of effects from all stages) 

NRd is the compression resistance of the effective strut section 

Ncr,z  is the elastic critical force for the effective strut, as given by the rules in 
EN 1993-2, 6.3.4 

Mz,Ed is the maximum value of bending of the flange about the z-z axis (in its plane) 
within the length of the effective strut 

Mz,Rd  = Wzfy/JM1 (the design value of elastic bending resistance of the flange, 
calculated using the JM1 factor) 

Note that clause 6.3.4 allows for situations where NEd is not constant over the length of 
the effective strut and permits the verification to be carried out at 0.25Lk from the end 
with the larger force, provided that the resistance of the cross section is also verified at 
the end. The above criterion conservatively excludes the Cmz factor applied to MZ,Ed (an 
appropriate value is difficult to determine).  

6.3 Interaction criteria when buckling load has been 
determined by FE analysis 

When the buckling load has been determined by FE analysis, the reduction factor F 
needed in the expressions in Section 6.2 is given by the ‘global slenderness’, as defined 
in Section 4.2. However, that value of slenderness depends only on in-plane behaviour. 
If lateral effects have been induced in the critical member, the reduction factor Dult,k, due 
to in-plane effects alone, is more difficult to define and the expression for global 
slenderness is not valid (although it has been shown by others[7] to give satisfactory 
results in some cases). For such situations, it is suggested that the elastic critical force or 
moment in the critical member is determined from the FE analysis and used directly to 
determine F or FLT. This has been found to be satisfactory by others[7]. 
 



ED008-D01.doc 25 

7 COMPOSITE MEMBERS 

At the composite stage, the only regions of a slab-on-beam composite bridge that will 
buckle are the lower flanges adjacent to intermediate supports and, possibly, the lower 
flanges adjacent to the abutments in integral bridges (where there is axial compression). 

As discussed in Section 2.5, the form of buckling is then a distortional mode. 

Although the manual effective length method can be applied to such regions, treating 
each main beam as a separate T section, this is known to be conservative. 

The equivalent strut method is useful for this situation, since the notional strut, as set 
out in EN 1993-2, 6.3.4.2, gives a good representation of the behaviour of the lower 
flanges. It is particularly useful when the bridge is constructed in stages (as is the usual 
case), as the stresses in the bottom flange are determined by summation and the 
buckling resistance is determined without the need to consider the stages. 

A FE analysis can determine a load factor (for the appropriate buckling mode) for the 
entire loading applied to a single structure but it will be very time consuming compared 
to the equivalent strut method (and will probably give a similar answer after much more 
design time!). 
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8 BUCKLING RESISTANCE FOR HALF-
THROUGH BRIDGES 

Certain structures, such as half through plate girder bridges, have a deck at tension 
flange level and rely on discrete U-frames to restrain the compression flange against 
buckling. The U-frames are not rigid but offer flexible intermediate restraint to the 
compression flange: the non-dimensional slenderness will be between that for an 
unrestrained length over the full main span and that over the length between U-frames, 
depending on the stiffness of the U-frames. 

The form of buckling is a distortional mode. 

The equivalent strut method referred to in Section 5.2.2 is the most straightforward and 
generally the most appropriate method of calculating the non-dimensional slenderness 
and therefore resistance to buckling. However, calculation of the slenderness needs to 
take account of the flexibility of the end restraints (it is usually impractical to make 
them so stiff that they are effectively rigid) and a method for doing so is given in 
PD 6695-2, Section 9. The effects on the design of the U-frames due to the restraint they 
provide to the compression flange must also be considered; this can be determined from 
BS EN 1993-2, 6.3.4.2(5). 

The equivalent strut method is conservative in relation to the buckling resistance of the 
main girders, as it does not take into account the St Venant torsional stiffness of the 
webs and flanges. However, the lateral force representing the restraint required to the 
compression flange (as given by clause 6.3.4.2(5)) can be much more onerous than 
previous rules (in BS 5400-3), resulting in greater design forces on the U-frame 
connections, and this conservatism can be problematic where there are geometrical 
constraints due to limited construction depth; a second order FE analysis may be 
justified in order to minimize the connection design forces.  

The complicated and time consuming approach of a second order FE analysis should 
not be considered lightly, as the benefits sought may not necessarily materialise: Some 
clients, including Network Rail[5], require an increased value for JSd or an increased 
value for JRd when using FE analysis in the design of any structure on their network. 
(The factor JSd is the partial factor taking into account uncertainties in modelling the 
effect of actions, see BS EN 1990, 6.3.2, and the factor JRd is the partial factor taking 
into account uncertainties in the resistance model, which forms part of JM, see 
BS EN 1990, 6.3.5.) Network Rail’s requirement is understood to be to allow quick 
structural assessments without the need for complex analysis, e.g. in the event of a 
bridge strike, and avoid the need to adopt sophisticated analytical methods to aid their 
on-going management. 
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9 SECOND ORDER ANALYSIS 

The alternative to eigenvalue analysis to derive buckling reduction factors is to account 
for buckling directly in the analysis.  An analysis allowing for the additional buckling 
deflections is called a second order analysis or a geometrically non-linear analysis.  
Where the effects of yielding are to be modelled as well, the analysis is geometrically 
and materially non-linear.  For local plate buckling problems, the true resistance will 
usually be significantly underestimated if material non-linearity is not included as well.  
In all types of second order analysis, it is important to model all imperfections if the 
failure load is to be determined directly. 

Second order analysis of frames and members is covered in EN 1993-1-1 clause 5.2.1 
and imperfections for these are covered in section 5.3.  For local buckling, second order 
analysis and imperfections are covered in Annex C of EN 1993-1-5. 

Second order analysis can be a very time-consuming process that offers little advantage 
in simple flexural and lateral buckling situations, but can offer greater advantage in 
more complex global buckling modes (such as combined buckling of paired girders) and 
in some local buckling cases. It may also be advantageous where bridge geometry 
makes the design rules difficult to apply, such as for curved girders. 

No detailed guidance is offered here. A broad description on how such an analysis 
would be carried out to check the stability of a pair of plate girders is given in Hendy 
and Jones[8]. 
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10 RECOMMENDATIONS FOR DETERMINING 
BUCKLING RESISTANCE 

10.1 Members in axial compression 
For uniform members under uniform axial force, non-dimensional slenderness can be 
easily calculated and the resistance determined using the appropriate reduction factor 
for flexural buckling from EN 1993-1-1. 

For non-uniform members and non-uniform loading, it may be feasible to calculate a 
‘lower bound’ value of buckling resistance by considering an equivalent uniform 
member and loading but more accurate values require finite element modelling. Beam 
elements will usually suffice for this, unless there are local effects that need to be taken 
into account. 

10.2 Members in bending 
For all members in bending, the determination of non-dimensional slenderness can be 
either by means of empirical rules or by use of finite element modelling. 

Empirical rules offer a quick solution but they can be quite conservative and become 
difficult to apply in non-uniform situations. 

Finite element modelling, using shell elements, will give a much more accurate 
prediction of elastic critical buckling loads, but the output from the analysis needs to be 
interpreted carefully. Local buckling modes may well occur before member buckling 
modes but if the plate elements have been verified according to the Eurocode criteria 
(thickness-to-width ratios, etc.) those local buckling modes are not of concern. 

10.3 Local buckling of elements 
In most situations there is no need to determine local buckling loads for plate elements. 

As noted earlier, although local buckling may appear in a FE model, it is not normally a 
governing criterion. If local buckling modes need to be modelled, then a suitably fine 
mesh will be needed - at least six elements per half wave length (this can be confirmed 
by a sensitivity analysis). It is impractical in normal design situations to model shear 
buckling; design for shear should be based on the rules in EN 1993-1-5. 

10.4 Second order analysis 
Second order analysis, due to its complexity and the lack of applicability of the 
principle of superposition for load cases, will seldom be used for the design of common 
bridge types, with the possible exception of those with complex geometry where it is 
difficult to apply the Eurocode formulae without adaptation.  It may sometimes however 
be used to retrospectively justify minor non-compliances with the intended design rules 
or construction requirements.  
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11 EXAMPLES 

The following examples of buckling modes derived from FE analyses were produced by 
Flint & Neill. SCI is grateful to Flint & Neill for permission to reproduce these images 
and the results of the buckling analysis for a model of the bridge example in P357. 

11.1 Flexural buckling 

  
 
Figure 11.1 Compression strut model showing overall flexural buckling and a higher 

mode showing local buckling of flanges and web 

11.2 Lateral torsional buckling 
The example below shows a model of paired girders, at the wet concrete stage, based on 
Example 1 in SCI publication P357. The loading was applied at top flange level and the 
buckling mode shown was the lowest global mode (although there were numerous lower 
eigenvalues, all related to local buckling of web panels).  
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Figure 11.2 Buckling of paired beams in Example 1 of SCI P357 

The load factor from the buckling analysis was 6.38, leading to a non-dimensional 
slenderness of 0.636. This may be compared with the non-dimensional slenderness 
derived in P357, using the rules from PD 6695-2, which was 0.89, based on values of 

11 C  = 1.0 (appropriate for uniform bending moment – with a udl and with hogging at 
one end, a value of 0.91 could have been justified) and D = 1.2 (for the destabilizing 
effect of load applied on the top flange). 

11.3 Distortional buckling in a half-through bridge 
The example below shows the buckling mode for a half-through bridge. More details of 
this example can be found in Hendy and Jones[8]. 

 
 
Figure 11.3 Buckling of girders in a half through bridge 
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11.4 Local buckling 

 
 
Figure 11.4 Local buckling of web in bending, shown with a fine FE mesh 
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APPENDIX A. WORKED EXAMPLE 

The following example illustrates the interaction between major and minor axis bending 
and warping torsion during the construction stage of the multi-girder bridge example in 
publication P357. 

A.1 Geometry and analysis model 
The structural arrangement given in P357 is shown below. 

 
Elevation 

 
Cross section 

 
FE model, showing disposition of bracing 

A.2 Design values of effects 
In the construction stage (Stage 1 in P357), the weight of wet concrete, including the 
cantilevers but not the edge beams, is carried by the bare steelwork. The vertical 
bending moments and shears in the main girders (ULS values) are given by the analysis 
that was carried out for P357. The values of vertical bending moment and shear for the 
inner girder are given in P357 are presented below, together with values for the outer 
girders.  

500 5001000 1000

3700 37003700
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marginal
strip

2000 20007300

   1100

28000 28000
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Distance from 
pier (m) 

Inner girder Outer girder 
My (kNm) Fz (kN) My (kNm) Fz (kN) 

0 –2573 689 –2068 538 
6.3 1024 415 738 325 

15.6 3132 43 2381 28 
28 25 –521 23 –404 

The effects of supporting cantilever formwork from the outer girder (i.e. the horizontal 
forces that applies to the outer girder) were not modelled in the analysis, nor was the 
effect of wind loads during construction. Both actions lead to in-plane bending of the 
flanges of the beams.  

A.2.1 Actions on cantilever 
Wet concrete + 

construction load
Wet concrete + 

construction load

 

The design value of the load due to wet concrete and construction load is 10.5 kN/m2 
and the cantilever width is 1.10 m. Hence the resultant torque on the outer girder is: 

M = 10.5 × 1.102/2 = 6.35 kNm/m 

The horizontal force on each flange is thus: 

Fh = 6.35/1.06 = 6.0 kN/m 

The application of this force is illustrated diagrammatically below. The flanges bend in 
plan as a continuous beam, for which the bending moment diagram is as shown. The 
maximum value of bending moment in the midspan region is approximately 18 kNm. 

Horizontal forces from cantilever falsework Bending moments in flanges due to cantilever loads

A.2.2 Wind actions 
The wind load during construction depends on the location, the geometry of the 
structure and the return period appropriate to the construction period. 

Fh = 6.0  kN/m on each flange 
Max BM in midspan flange 18 kNm 
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In this case, for a duration of this construction stage up to 3 months, the recommended 
return period is 5 years (see BS EN 1991-1-6); the basic wind speed (including 
adjustment for altitude) is 25 m/s; no seasonal or direction reduction is made; the 
pressure coefficient is 2.0; and the overall depth is 1.4 m. Treating wind as an 
accompanying action this leads to a total adverse wind load of 1.2 kN/m and a 
favourable wind load (on the other span) of 0.33 kN/m. 

Considering the structure as a series of four uniform 2-span beams, bending in plan, and 
sharing the bending equally between all 8 flanges (the bracing and control bracing 
achieve this) the maximum bending moment in a flange at midspan is approximately 
12 kNm. 

(BMs shown only on outer girder) 
Horizontal forces due to wind Bending moments in flanges due to wind 

Max BM in midspan flange 12 kNm 
Total wind load 1.2 kN/m 
(on adverse span) 
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A.3 Verification of design resistance 

The interaction of lateral bending with vertical bending, and the verification of 
resistance to buckling of the top flange of the outer girder, is considered below. 

The interaction is verified using the criterion in Section 6.2.2 of this document. 
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The values of the parameters in this expression are as follows: 

A.3.1 Compression force 
Maximum moment in midspan = 2381 kNm 

Wy  = 22.87 x 106 mm3 (from P357, page 18) 

Ae  = Area of flange plus 1/3 web below the centroid 
= 20000 + 510 x 10/3 = 21700 mm2 

NEd = 2381 x 106 x 21700/22.87 x 106 = 2260 kN 

A.3.2 Lateral bending moment 
Mz,Ed = 12 +18 = 30 kNm 

A.3.3 Design values of resistances 
NRd = 21700 x 345 /1.1 = 6810 kN 

Wz  = 5002 x 40/6 = 1670 x 103 mm3 

Mz,Rd = 1670 x 103 x 345 /1.1 = 523 kNm 

A.3.4 Buckling parameters 
F = FLT = 0.525 (P357, page 35) 

Mcr = Wy fy /CO 2 = 22.87 x 106 x 345 / 0.892 = 9960 kNm (CO from P357, page 34) 

Ncr,z  = Mcr × Ae / Wy = 9960 x 21700 / 22.87 x 106 = 9450 kN 

A.3.5 Verification of resistance to combined effects 
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Using the above design values: 
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The resistance of the outer girder to the combined effects is satisfactory. 

 


