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FOREWORD

The checking of the in-plane stability of single-storey portal frames requires different
approaches to those commonly used for multi-storey buildings. BS 5950-1:2000
introduces more rigorous recommendations for the stability checks for portal frames than
the 1990 version. This is necessary because portal frames have proved to be such a
successful structural form that more frames are being constructed with geometries that
are beyond the range foreseen when the recommendations in BS 5950-1:1990 were
prepared.

This document is intended for the design of portal frames used for single-storey buildings
loaded predominantly with roof loading that cause large bending moments in the rafters
and the external columns. It is not intended for portals used to stabilise buildings, such
as used where cross-bracing is not possible, but the principles described are applicable to
the design of such frames.

This publication was written by Mr Charles King of The Steel Construction Institute.

The SCI would like to acknowledge with special thanks, the extensive work conducted by
CSC (UK) Ltd, particularly Mr A J Rathbone, in the development and checking of the
methods and checking the contents of the document.

The SCI would also like to express its thanks to:

Professor J M Davies (University of Manchester) and Mr Y Galea (CTICM) for
review of the document and the methods, as they were developed.

Mr M Barkus and Mr J Knott (both of Wescol Glosford), Professor D A Nethercot
(Imperial College of Science, Technology and Medicine) and Mr P Bennett (Quickport
Software) for their comments on the draft documents.

Funding for this project was gratefully received from the Department of the
Environment, Transport and the Regions (DETR) and Corus (formerly, British Steel)
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SUMMARY

This document introduces designers to the in-plane stability calculation methods in
BS 5950-1:2000 for single-storey portal frames designed using either elastic or plastic
analysis. These calculations are an essential part of the Ultimate Limit State (ULS)
verifications of portal frames. In addition to a review of all these methods, it shows how
second-order calculations can be performed even when second-order software is not
available.

This document includes:

e An introduction to the in-plane stability of single-storey portal frames.

e A commentary on the three methods of checking the in-plane stability of portal
frames given in BS 5950-1:2000, that is:

(a) The Sway-check method
(b) The Amplified Moment method
(c) Second-order analysis
e  Worked examples of a simple method for second-order calculations that can be used

where second-order analysis software is not available.

The instances in which individual members need to be checked for in-plane buckling are
also explained. Second-order analysis by application of the energy method is explained
in a form that can be applied in hand calculations, and this is illustrated by four worked
examples.

Stabilité en Plan des Portiques selon la Norme BS 5950-1:2000
Résumé

Ce document présente aux calculateurs les méthodes de calcul de stabilité en plan selon
la norme BS 5950-1:2000 pour des portiques a un niveau calculés en utilisant soit une
analyse élastique, soit une analyse plastique. Ces calculs sont une partie essentielle des
vérifications aux Etats Limites Ultimes (ELU) des portiques. En complément de la
présentation de toutes ces méthodes, il est montré comment des calculs au second ordre
peuvent étre effectués sans avoir recours a un logiciel d'analyse au second ordre.

Ce document comprend :

e Une introduction a la stabilité en plan des portiques & un niveau.

o  Des commentaires sur les trois méthodes de vérification de la stabilité en plan des
portiques données dans la norme BS 5950-1:2000, c’est-a-dire:

(@) La méthode de vérification avec longueurs de flambement a noeuds déplacables.
(b) La méthode par amplification des moments.

(c) L'analyse au second ordre.
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e Des exemples d'application d'une méthode simple de calcul au second ordre qui peut
étre utilisée en l'absence de logiciel d'analyse au second ordre.

Les cas pour lesquels les barres doivent étre vérifiées vis-a-vis du flambement dans le
plan sont aussi explicités. L'analyse au second ordre par application de la méthode de
l'énergie est décrite de facon a ce qu'elle puisse étre appliquée manuellement et est
illustrée par quatre exemples.

Ebene Stabilitit von Rahmentragwerken nach BS 5950-1:2000
Zusammenfassung

Dieses Dokument fiihrt Tragwerksplaner in die Berechnungsmethoden der Stabilitdit in
derTragwerksebene von eingeschossigen Rahmentragwerken nach BS 5950-1:2000 ein,
die emtweder elastisch oder plastisch berechnet wurden. Diese Berechnungen sind ein
wichtiger Teil der Uberpriifung des Grenzzustands der Tragfihigkeit von
Rahmentragwerken. Zusdtzlich zum Uberblick dieser Methoden wird gezeigt, wie
Berechnungen nach Theorie II. Ordnung durchgefiihrt werden kénnen, auch wenn
entsprechende Software nicht verfiigbar ist.

Dieses Dokument enthdilt:
e cine Einfithrung in die Stabilitiit von eingeschossigen Rahmentragwerken in ihrer
Ebene,

o cinen Kommentar zu den drei Methoden der Uberpriifung der Stabilitit in
Tragwerksebene von Rahmentragwerken nach BS 5950-1:2000, welche sind:

(a) Uberpriifung der Seitensteifheit/-weichheit,
(b) Methode der mit einem Vergroff erungsfaktor erhohten Momente,
(¢) Berechnung nach Theorie II. Ordnung.

e  Berechnungsbeispiele einer einfachen Methode fiir Berechnungen nach Theorie II.
Ordnung, die benutzt werden kann, wenn entsprechende Software nicht verfiigbar ist.

Die Fille, in welchen fiir einzelne Bauteile ein Knick- / Biegeknicknachweis erforderlich
ist, werden erklirt. Die Berechnung nach Theorie 1I. Ordnung durch Anwendung der
Energiemethode wird in einer weise erkldrt, daf sie von Hand durchgefiihrt werden kann,;
dies wird anhand von vier Berechnungsbeispielen illustriert.

Estabilidad de poérticos en su plano segiin BS 5950-1:2000
Resumen

Con este documento se describen a los proyectistas los métodos de cdlculo de estabilidad
de la BS 5950-1:2000 para pérticos sencillos de una planta calculados segiin métodos
eldsticos o pldsticos que son una parte esencial de las comprobaciones de estados  mite
ultimos (ELU). Ademds de revisar esos métodos Se muestra como se pueden llevar a cabo
cdlculos de segundo orden incluso sin software de segundo orden.
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La publicacién incluye:

o Una introduccion a la estabilidad en su plano de porticos de una planta.

e Comentarios sobre los tres métodos de comprobacion incluidos en BS 5950-1:2000,
esto es:

(a) El método de la comprobacion de la deriva
(b) El método de amplificacion de momentos
(c) Calculo en segundo orden.

o Ejemplos desarrollados de un método sencillo para cdlculos de segundo orden
utilizable sin software de segundo orden.

También se explican los casos en que piezas individuales deben comprobarse a pandeo.
Los métodos basados en la Energia se explican de forma que puedan ser aplicados
manualmente, lo que se ilustra con cuatro ejemplos totalmente resueltos.

Stabilita nel piano di portali in accordo alla BS 5920-1:2000
Sommario

Questa pubblicazione affronta il problema della stabilita nel piano di portali in acciaio e,
rivolta prevalentemente ai progettisti, riporta i metodi di calcolo per la progettazione sia
elastica sia plastica in accordo alla BS 5950-1:2000. I calcoli effettuati in accordo a tali
metodi costituiscono una parte essenziale della verifica agli Stati Limite Ultimi (S.L.U.)
di portali in acciaio. In aggiunta ad una presentazione generale di questi metodi, viene
mostrato come effettuare analisi del secondo ordine anche quando non si siano disponibili
specifici strumenti software in grado di effettuare automaticamente tale tipo di analisi.
Questa pubblicazione include:

s un’introduzione alla stabilita nel piano di portali in acciaio.

e un commentario ai tre metodi di verifica per linstabilita nel piano dei portali in
accordo alla BS 5950-1:2000; cioé:

(@) il metodo di controllo dello spostamento trasversale;
(b) il metodo di amplificazione dei momenti;
(c) l'analisi del secondo ordine.

o esempi applicativi di un metodo semplificato per i calcoli del secondo ordine da
usare quando non sono disponibili metodi piu raffinati in grado di tenere
direttamente in conto gli effetti del secondo ordine.

Viene anche trattato il caso in cui le verifiche di stabilita nel piano debbano essere
condotte sui singoli elementi. In aggiunta, é proposta l’analisi del secondo ordine sulla
base dei metodi energetici in una forma anche applicabile manualmente, con esplicito
riferimento ai quattro esempi applicativi riportati nella pubblicazione.



1 THE IN-PLANE STABILITY CHECKS IN
BS 5950-1:2000

1.1 Checks for portal frames

Single-storey portal frames of economic proportions need to be checked to
ensure that they have adequate in-plane stability, whether designed by elastic or
plastic methods. This type of frame cannot be checked by the simple methods
for multi-storey frames in BS 5950-1%" Clauses 2.4.2.6 and 2.4.2.7 because
axial compression in the rafter is not considered in that method. The structural
phenomena involved in in-plane stability of single-storey frames are described in
Section 2 together with a comparison with multi-storey frames.

BS 5950-1:2000 gives three methods for checking the in-plane stability of
single-storey frames:

e  The Sway-check method
e  The Amplified Moment method
e  Second-order analysis

The methods apply to portal frames designed either by elastic design (see
Clause 5.5.2 of BS 5950-1) or by plastic design (see Clause 5.5.3 of
BS 5950-1).

It will almost always be preferable to perform these checks by software. It is
possible to perform the checks by ‘hand’, but the results will almost invariably
be less economical. The only benefit of the ‘hand’ method of second-order
analysis is to gain a greater understanding of the response of the frame to the
second-order (P-delta) effects and the loss of stiffness resulting from the
formation of plastic hinges.

1.2 The methods in brief
1.2.1 The Sway-check method

Range of application

The Sway-check method may be used for portals that are not tied portals and
which satisfy the following geometrical limitations:

e Span/height to eaves is not more than 5.

e Rise of apex above column tops is not more than span/4 for symmetrical
spans or a value given by a formula for asymmetric rafters.

e  Either the notional sway deflection from notional forces (calculated by first-
order analysis) is not more than h/1000, or the span/depth ratio of the
rafters is within a limit given by a formula. The stiffness of the cladding is
not to be considered in calculating the notional sway deflection for
predominantly gravity load cases (e.g. Combination 1).

Advantages and disadvantages

The Sway-check method is the simplest method and gives economical designs if
the frame is sufficiently stiff to satisfy either the 4/1000 check or the formula



check because of the section sizes selected either to give the necessary strength
or to satisfy the Serviceability Limit State (SLS) requirements. This method
will often give the most economical designs for single span portals that tend to
be relatively stiff. Economy is achieved because there is no reduction in frame
strength for the gravity load cases (LLoad combination 1 of Clause 2.4.1.2 and
Crane combination 1 of Clause 2.4.1.3) that are generally the critical design
load cases. Many multi-span frames will not satisfy the notional sway
requirements without increasing the size of the members above the size required
for strength or for SLS requirements. When using the Sway-check method, the
steel strength (e.g. S275 or S355) has no effect on the in-plane stability
calculation.

The design steps for this method and further details of the method are given in
Section 3.

1.2.2 The Amplified Moment method
Range of application

The Amplified Moment method is a method that may be used where the frame
does not meet the limitations of the sway-check method. It may be used for
portals that are not tied portals and which have an elastic critical buckling ratio,
A, DOt less than 4.6. The elastic critical buckling ratio, A, is described in
Section 2.3

Advantages and disadvantages

The Amplified Moment method is a simple method to apply when the value of
Ao is known. If easy-to-use software is available, the method is easy to use.
When software is not available, then the formulae in Section 4 may be used, but
they are complex and several formulae need to be applied for a multi-span
frame. The method gives reasonably economical designs if the frame is
relatively stiff because of the section sizes required either to give the required
strength or to satisfy the SLS requirements. In particular, where A, > 10, there
is no reduction in frame strength. Thus, the method will give economical
designs for most single span portals because they tend to be relatively stiff. It
will also give reasonably economical designs for multi-span frames that are
relatively stiff. However, many multi-span frames will not satisfy the
requirement that 4., > 4.6, unless the size of the members is increased above the
size required for strength or SLS requirements. The method does recognise the
improvement in in-plane stability of the frame resulting from the use of higher
strength steel (grade S355 steel). This improvement comes from an increase in
Ay, Dot from A, which is independent of the change of steel grade,

The design steps for this method and further details of this method are given in
Section 4.

1.2.3 Second-order analysis
Range of application

Second-order analysis is another alternative method where the frame does not
meet the limitations of the Sway-check method. It may be used for all portals
including tied portals. Tied portals must be designed using second-order
analysis. For tied portals, the analysis method must also be able to calculate the
non-linear behaviour of the apex drop, a capability that may not be included in
all packages that describe themselves as ‘second-order’.



Advantages and disadvantages

Second-order analysis is simple to apply if there is easy-to-use software
available. It will give the most economical designs for more flexible frames
such as multi-span frames. It may give less economical designs than the other
methods for stiffer frames because it will always calculate a reduction of frame
strength from second-order (P-delta) effects. The other methods have threshold
stiffness values above which the strength is not reduced. The Second-order
method does recognise the improvement in in-plane stability of the frame
resulting from the use of higher strength steel (grade S355 steel).

Further details of this method are given in Section 5.

1.3 Selecting methods for different types of
frames

1.3.1 Single-span frames (not tied portals)

Single-span frames may be designed by any of the three methods described
above.  Where the frames are within the geometrical limitations of the
Sway-check method and pass either the #/1000 check or the formula check (see
Section 1.2.1 above), the method does not give any reduction of frame strength
for the gravity load cases. Where the frames are outside the geometrical
limitations of the Sway-check method or fail the checks, another method must
be used. For frames slightly outside the geometrical limitations, it may be
worth making minor alterations to the scheme to fit into the limitations, such as
an increase in stiffness of the frame to satisfy the deflection check, or setting
the bases deeper to suit the span to height ratio or a change of rafter geometry.
Where the Sway-check method is not satisfied, either the Amplified Moment
method or Second-order analysis should be used.

1.3.2 Multi-span frames (not tied portals)

Multi-span frames often have relatively low stiffness.  Although some
multi-span frames might be sufficiently stiff for the Sway-check method, many
will not. Where the frames are too flexible and have slender internal columns,
the most efficient way to improve the frame stiffness will often be to increase
the internal column stiffness.

The amplified moment method may give an economical frame where the frame
has a value of A, > 4.6. Where the value of A, > 10, there is no reduction of
design strength in this method. However, many multi-span frames will have a
value of A, less than 4.6, so this method cannot be applied. This leaves the
choice between stiffening the frame and using second-order analysis.

1.3.3 Tied portals

Tied portals should always be designed using second-order analysis. The
solution method for this analysis is not specified in BS 5950-1, leaving freedom
to choose a suitable routine. It should be noted that for tied portals with low
roof slopes, there is an important non-linearity in the apex deflections. This
arises because the compression of the rafter and the stretching of the tie reduce
the height of the apex, which reduces the vertical component of the rafter force.
To maintain equilibrium, an increased rafter force is required, which increases
the apex deflection until either equilibrium is reached or the apex snaps through.



Therefore, whatever routine is selected, it must take account of the non-linear
behaviour of the rafter and tie system, which will almost certainly involve an
iterative procedure.

Tied portals of economical proportions will normally have very high axial
forces in the rafters. These forces often cause a significant reduction in the
stability of the frame. Therefore, rafters will often need to be made
significantly stiffer than the section that would satisfy a first-order analysis.

1.3.4 Stability portals or ‘wind portals’

Stability portals are outside the scope of this document. Stability portals are
portals used to stabilise structures where cross-bracing is not acceptable. Such
frames have little vertical loading distributed along the beam element, so have
small axial loads in the beam. The dominant failure mode is by sway.
Second-order analysis, the Amplified Moment method or the Sway-check
method (lateral load case) would be appropriate for checking stability frames,
but the gravity load case of the Sway-check method should not be used.
Alternatively, where the axial force in the beam is very low, it is reasonable to
design such frames according to the rules for multi-storey sway-frames rather
than the rules for ordinary portal frames.

1.4 Required load factor, A

BS 5950-1 Clauses 5.5.2 and 5.5.3 introduce the required load factor A,. This
is a factor to allow for P-delta effects where these have not been calculated in
the global analysis. For elastic design of portal frames, the output from a
first-order global analysis with ULS loads must be multiplied by A, before the
member resistances are checked. For plastic design, the plastic collapse factor,
Ay, calculated by first-order global analysis with ULS loads must not be less
than A,. Member strength and stability calculations should be made at 4, x ULS
rather than 1.0 x ULS.

1.5 Base stiffness

BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. This may be summarised as follows for the cases most
frequently occurring in portal frame design.

Base with a pin or rocker

The base stiffness should be taken as zero

Nominally pinned base

If the base moment is assumed to be zero, the base should be assumed to be
pinned in the global analysis used to calculate the moments and forces around
the frame. However, the base stiffness may be assumed to be equal to 10% of
the column stiffness when checking frame stability or determining in-plane
effective lengths, which form part of the ULS process. When using
elastic-plastic design, an appropriate base capacity must also be specified.

For calculating deflections at SLS, the base stiffness may be assumed to be 20%
of the column stiffness, but this should not be used for in-plane stability checks.



Other types of base

BS 5950-1 Clause 5.1.3 also gives guidance for the use of nominally rigid bases
and nominal semi-rigid bases.

Application of these provisions for base stiffness to the different methods of
checking frames is given in Section 3.3.4 for the Sway-check method, in
Section 4.3.5 for the Amplified Moment method and in Section 5.3.4 for
Second-order methods. The application to the hand method of second-order
calculations is given in Appendix A.2.4 for common portals and
Appendix B.2.4 for tied portals.

1.6 Notional horizontal forces

1.6.1 General

BS 5950-1 uses notional horizontal forces, which are taken as 0.5% of the
factored vertical dead and imposed loads. They may be applied at the tops of
the columns for simplicity, or at the point of application of load, as shown in
Figure 1.1.

0.05 R 4 0.05R 5
—-

0.05 (R 4- C,)
0.05 C;

0.05 (Rs- Q
-
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Figure 1.1 Notional horizontal forces (for mezzanines etc, see Section
1.6.2)



These notional horizontal forces are used for two completely different purposes:
(i) For checking frame strength
The notional horizontal forces are applied as a design horizontal load to
allow for the effects of practical imperfection such as a lack of verticality,
as given in Clause 2.4.2.4. The notional horizontal forces are applied in
Load combination 1 of Clause 2.4.1.2, which is combination of dead load
plus imposed loads (gravity loads).

(i) For checking frame stiffness

The notional horizontal forces are applied as the loading used in a stiffness
check of frames such as in Clause 5.5.4.2.1. In this application, the
notional horizontal forces are applied to the frame without any other
loading to assess the stiffness of the frame by calculating the horizontal
deflections of the column tops assuming linear elastic behaviour.
Clause 5.5.4.2.1 says that the forces should be equal to 0.5% of the
vertical reaction at the base of the respective column. This assumes that
the column reactions are known exactly before the notional horizontal
forces are defined. In practice, the deflections are not sensitive to the
distribution of the notional horizontal forces. Thus, some approximation
may be made in the distribution of these loads. The most important point
is that notional horizontal forces must be calculated from all the vertical
loads on the building and this is most conveniently calculated by
considering the vertical reactions of the columns.

Although the magnitude of the forces in both (i) and (ii) above is the same, at
0.5% of factored loads, there is an important difference in the loads to be
applied in the case of crane loads. In Clause 2.4.2.4, it is clear that the vertical
crane loads need not be included when calculating the notional horizontal forces
for checking frame strength. By contrast, all vertical loads must be applied
when checking the frame stiffness, hence in the stiffness check, the notional
horizontal forces must include 0.5% of the vertical crane loads. However, the
in-plane stability of the frame is not affected by dynamic loading, so the
notional horizontal force should be taken as 0.5% of the factored crane load
without dynamic or impact effects.

1.6.2 Mezzanines and other connected structures

Where a mezzanine floor or other structure is connected to the portal frame, the
stability of the connected structure must be considered when checking both the
strength and the stiffness of the portal. Where a connected structure contains its
own stability system (e.g. cross-bracing, stability portal or rigid moment
connections) that makes the connected structure at least as stiff as the portal
frame, then the portal need not resist notional horizontal forces from the
connected structure. Where the connected structure is not restrained by any
stability system, the sum of the notional horizontal forces from the connected
structure must be applied to the portal frame. In the intermediate condition,
where the connected structure provides some stability but is not as stiff as the
portal frame, the notional horizontal forces from the connected structure may be
shared.

The stiffness of the connected structure and the portal frame may be calculated
in terms of the slope of the columns induced by the notional horizontal forces.
Alternatively, it may be calculated in terms of the deflection at the connection
points induced by the notional horizontal forces. It is rare to find these slopes



or deflections uniform throughout a structure, so the mean or median of the
calculated values may be used.

1.7 Local concentrated lateral loads in buildings

Building structures are often subject to local concentrated loads, such as crane
loads. Where these cause sway deflections (e.g. crane surge loads or notional
horizontal forces), these loads may be shared by the adjacent frames in
buildings with metal roof sheeting or with continuous bracing.



2 INTRODUCTION TO IN-PLANE
STABILITY

2.1 Why are there in-plane stability checks?

All slender members resisting axial compression would buckle if the applied
axial force were large enough. Stability checks calculations verify that the
resistance to buckling is greater than the applied forces. When checking the
stability of a column, the buckling resistance is calculated for buckling about
both the major axis and the minor axis.

In frames, the stability checks must also verify the adequacy of the buckling
resistance about both the major axis and the minor axis. In normal portal
frames, buckling out of the plane of the frame is checked in the same way as
for any other beam-column, considering buckling between lateral restraints and
between torsional restraints provided by bracings etc. These bracings make the
effective lengths of each element easily identifiable. However, buckling in the
plane of the frame is more complicated than in normal beam column elements.
This is because there is normally no bracing in the plane of the frame, and thus
the restraint to any column depends on the stiffness of the rafters and the other
columns. Equally, the restraint to any rafter depends on the stiffness of the
columns and the other rafters. Therefore, checks for the stability of the frame
must consider the entire frame stiffness. Although engineers are accustomed to
checking the buckling resistance of columns using effective lengths, the effective
lengths of portal frames can only be defined correctly if the stiffness of the
entire frame is considered.

The in-plane stability checks for portal frames in BS 5950-1 differ from those
for beam and column buildings. This is because the axial loads in portal rafters
have a much greater effect on the stability of the frame than the axial loads that
might occur in the beams of common beam and column buildings.

2.2 Axial compressive forces in frames
2.2.1 General

In-plane stability depends on the magnitude of the axial compression in the
members, so it is important to understand the relative magnitude of these forces
in the rafters and columns.

Most frames have axial compressive forces in some of the members. The
distribution of forces depends not only on the applied loads, but also on the
structural form of the frame and the bending moments throughout the frame.
The magnitude of the second-order buckling effects depends not only on the
magnitude of the force, but also on the elastic critical buckling load of the
members and the elastic critical buckling load of the entire frame. This is
discussed in Section 2.4.2 and Section 2.4.3. The lower the elastic critical
buckling loads, the greater will be the second-order effects from a given axial
compressive force.

Where there is axial tension in the members, the second-order effects increase
the stiffness of the frame, so no reduction in frame capacity need be considered.
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2.2.2 Ordinary portals

A typical bending moment diagram for an ordinary portal frame under vertical
loading is shown in Figure 2.1. There is a horizontal reaction at the bases of
the columns to maintain equilibrium with the bending moments in the columns.
To maintain the horizontal equilibrium of these horizontal reactions, the rafters
carry an axial compression as shown in Figure 2.2. These axial compressive
forces are not large in magnitude, but they may be significant compared with
the elastic critical buckling load of the rafters, because the rafters are relatively
long. This effect is considered in Section 2.4.2

The axial compressive force in the rafter is seriously affected by the ratio of the
portal span to the column height. This is because the bending moment at the
column top depends on the span and the horizontal reaction at the column base
depends on the moment at the column top and the height of the column. The
moment at the column top is given approximately by:

2
Column top moment, M =~ lvé
12
where:
w 1s the distributed load on the rafter

L is the span of the portal.

The horizontal reaction for a pinned base is then given by:

oM wL*
H 12h
where:

h is the height of the column.

Therefore, for a given loading and span, the axial compression in the rafters is
less for a high portal frame than for a low frame.

The axial compression in the rafters produces second-order effects in the rafters,
which reduces the in-plane stability of the frame in addition to the second-order
effects from the axial compression in the columns.

P &

Figure 2.1 Bending moments in a typical frame
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Figure 2.2 Horizontal reactions and rafter axial force

2.2.3 Tied portals

Tied portals in which the tie is near the eaves level behave very differently from
ordinary portals. The structural behaviour is more like that of a rigidly-jointed
truss on posts. The axial compressive forces in the rafters are much higher than
in ordinary portals, especially for portals with low roof slopes.

The bending moments for a tied-portal are illustrated in Figure 2.3. The
bending moment diagram is similar to a pair of fixed ended beams, each with a
span from eaves to apex. Therefore, the bending moments both in the rafters
ad in the columns are approximately a quarter of the bending moments in an
ordinary portal. This reduction in the bending moment allows the use of a
rafter with a much smaller bending resistance. The reduced bending moments
are a consequence of the truss action of the tied portal. The axial loads are
shown in Figure 2.4.

— —
Figure 2.3 Bending moments in a tied portal
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Figure 2.4 Column shears and rafter and tie axial forces

The high axial loads on rafters that require only relatively small bending
resistance means that the rafters are seriously affected by second-order effects.
For this reason, it is recommended that tied-portals are always checked by
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second-order analysis. However, if this is to be done, the checks should be no
less rigorous than the in-plane checks on a truss rafter. In addition, the
calculations must allow for the increase in axial forces arising from a reduction
in the height between the apex and the tie. This reduction in height is a
consequence of the strains in the rafters and tie. A convenient method of
avoiding this reduction in height is to install a strut between the apex and the tie
to maintain a constant height between the apex and the tie. This must be
properly restrained against out-of-plane displacements of the frames at both
ends.

2.3 Elastic critical buckling of frames

Struts have a theoretical elastic critical buckling load, or Euler load, which
could only be reached if the strut has an infinitely high strength. The buckling
load, or Euler load, for a pin-ended strut is given by:

2
n" El
P(,‘r = 2

L

where:
E is the Young’s modulus
1 is the inertia of the strut
L is the length of the strut.

The critical buckling load is a theoretical load and exceeds the actual failure
load of a real strut as shown in Figure 2.5. In the figure, both P, and the
squash load P, (= Area x yield stress) are shown.

Force

Slenderness

Figure 2.5 Elastic critical buckling load of a strut
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Similarly, frames have a theoretical elastic critical buckling load, which could
only be reached if the frame has an infinitely high strength. This will be
referred to in this document as V.. This is commonly expressed in a ratio
called ‘lambda crit’, A, which is defined as:

Vcr
Ao =
VULS

where:
Ve is the elastic critical buckling load
Vus 1s the applied loading at ULS.

The value of V., depends on the distribution of load on the frame, so A should
be calculated from values of V., and Vs that have proportionately the same
distribution of load.

The value of A, varies according to the magnitude of the applied ULS loading,
Vuis. A large value of A indicates that the loading on the frame is well below
the buckling resistance. A value of A just above unity indicates that the frame
is near to its failure load. It must be remembered that failure will usually occur
well below V., due to bending stresses in the frame, initial imperfections and the
finite value of yield stress. However, A, is a very useful ratio, both as an
indicator of the sensitivity of the frame to buckling and in calculating
amplification factors.

2.4 Second order (P-delta) effects
2.4.1 General

The strength checks for any structure are valid only if the global analysis gives
a good representation of the behaviour of the actual structure.

When any frame is loaded, it deflects and its shape under load is different from
the undeformed shape. The deflection causes the axial loads in the members to
act along different lines from those assumed in the analysis, as shown
diagrammatically in Figure 2.6 and Figure 2.7. If the deflections are small, the
consequences are very small and a first-order analysis (neglecting the effect of
the deflected shape) is sufficiently accurate. However, if the deflections are
such that the effects of the axial load on the deflected shape are large enough to
cause significant further deflection, the frame is said to be sensitive to
second-order effects. These second-order effects, or P-delta effects, can be
sufficient to reduce the resistance of the frame.

Second-order effects are geometrical effects and should not be confused with
material-non-linearity.

There are two categories of second order effects:

(i) Effects of deflections within the length of members, sometimes called P.3
(P-little delta) effects.

(ii) Effects of displacements of the intersections of members, sometimes called
P.A (P-big delta) effects.

12



Figure 2.6 Asymmetric or sway mode of deflection

Figure 2.7 Symmetric mode of deflection

The practical consequence of P.6 and P.A effects is to reduce the stiffness of
the frames below that calculated by first-order analysis. Single-storey portals
are sensitive to the effects of the axial compression forces in the rafters. These
forces are commonly of the order of 10% of the elastic critical buckling load
(or Euler load) of the rafters, around which level the reduction in effective
stiffness becomes important. Tied portals are especially sensitive to the effects
because the axial compression forces in the rafters are commonly many times
higher than in ordinary portals.

Because of the second-order effects due to the rafter compression, the simple
check for A, of multi-storey buildings in Clause 2.4.2.6 of BS 5950-1 is
unconservative for portal frames.

2.4.2 P.5 (P-little delta) effects

P. &S effects on member behaviour are due to displacements at right-angles to a
straight line between the ends of the member. Typical displacements are shown
in Figure 2.8
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Figure 2.8 Typical displacements d (little delta)

These displacements may be the result of an external load or moment, or may
be the result of the natural tendency to buckle under pure axial load. The
displacements are the sum of the initial deformation of the member and the
deflection due to loading. The result of the second-order effects is to increase
the bending moment when the axial load is compressive (see Figure 2.9). This
increase in the bending moment increases the curvatures, which reduces the
effective stiffness of the members. Conversely, when the axial load is tensile, it
increases the effective stiffness, though the effect will generally be minimal in
common single-storey portal frames.

M, M2

P: P 1st order moments
and forces

Ist order bending moments

Ist order displacements

Ist order moments
2nd order equilibrium moments

P.5 moments

Figure 2.9 P.6 (P — little delta) effects

A simple illustration of P.§ effects is the behaviour of a simply supported beam
carrying a distributed load that varies as a sine curve, as shown in Figure 2.10.
The deflected shape is also a sine curve. The central deflection when there is no
axial force is defined as J,.
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Figure 2.10 P.6 effects in a simply supported beam

Elastic theory™ shows that when an axial compression, P, is applied, the central
deflection increases to 6p where:

50
Op =
I-P/P,
where:
7z El
P = > the Euler buckling load
L

E is Young’s modulus

P~

is the inertia

L is the length.

As P increases, {1 ——I—J—} decreases so 5p will increase. The stiffness, EI, of
Pcr

the beam affects not only the deflection &, but also it affects the increase of the
deflection {1/[1 - (P/P)]}.

The difference in bending moment between the first-order analysis and the
second-order analysis, oM, is:

oM = P(6,-0,)
P/P,,
= | P§, ——
1-P/P,
s, Pcr
Writing — = A, then:
P
1
oM = P§,
Ag —1
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2.4.3 P.A (P-big delta) effects in purely elastic frames

P.A effects are the effects on overall frame behaviour due to displacements of
the ends of members at right-angles to their lengths. P.A4 effects are shown in
their simplest form in Figure 2.11. A vertical load P is applied to the top of a
cantilever column in which the column top is offset by a distance A from a
vertical line through the column base. Therefore, the column must not only
resist the axial load P but also a moment that increases along its length to a
value of P.A at the base.

o

\__AP-A

Figure 2.11 P. A effects on a cantilever column

The displacements, 4, are the sum of the initial deformation of the frame and
the deflection due to loading. For pitched roof portals, the principal modes of
deflection are lowering of the apex and sway, as shown in Figure 2.12 and
Figure 2.13.

A Ao

Figure 2.12 Typical displacements A (big delta) in a sway mode
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Figure 2.13 Typical displacements A (big delta) in a symmetrical mode

Another possible mode of failure that is sensitive to P.A effects is ‘arching
failure’ or ‘snap-through’ of a pair of rafters, see Figure 2.14. In this form of
failure, the spread of the valleys allows the apex of the roof to drop, so
reducing the arching effect and increasing the bending moments in the rafters
and columns.

Tension forces tend to increase the effective stiffness, but this is rarely
significant in common structures.

Figure 2.14 Arching failure or snap-through

Frames have critical buckling loads, V,, similar in concept to the critical
buckling loads, P, for struts as described in Section 2.3. The ratio of the
elastic critical buckling load, V., to the ULS, load Vi, is expressed as A,
the critical buckling ratio.

In most practical single-storey portal frames, the first mode and second mode of
buckling are the most important. This is because the first mode of buckling,
shown in Figure 2.15, is similar in shape to the typical sway deflections shown
in Figure 2.6. Also, the second mode of buckling, shown in Figure 2.16, is
similar in shape to the typical symmetrical deflections shown in Figure 2.7.

Figure 2.15 First mode of buckling (buckling load V1)
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Figure 2.16 Second mode of buckling (buckling load Vcr2)

The deflected form of a frame can be considered as the sum of a number of
component deflected forms, where each component is in the shape of one of the
buckling modes. Each component of the deflection will be increased according
to the A for that mode. Therefore, if a particular deflection, &, is made up of
components J, from buckling mode 1, and &, from buckling mode 2, then the
actual deflection, & , including second-order effects, will be given by:

j‘crl j‘cr2
oy = 0 + 9,
j‘crl -1 j‘cr2 -1

Normally in portal frames, the buckling load in the second mode, V., is at
least twice the buckling load in the first mode, V., so the following conclusions
can be drawn:

. j‘cr2 j‘crl
o Ifv ,>> V],thenk ,>> A _,sothat | —— |<| ———
Cr. cr CT. cr ] 1 1

cr2 -1 crl

This means that deflections similar to the first mode of buckling will
introduce bigger P-delta effects than deflections similar to.the second mode
of buckling.

(i) If the deflections from a load case are almost entirely similar to one mode
of buckling, the P-delta effects will be dominated by

A
[ = } for that mode of buckling.
A -1

In many practical frames, the critical load case for ULS is the mainly gravity
load case:

1.4 x dead load + 1.6 x imposed load + NHF

where:

NHF is the sum of the notional horizontal forces (which is the very small
load of 0.5% of the factored vertical loads).

For this load case, the deflection form is similar to the second mode of
buckling, the symmetrical mode shown in Figure 2.16, up to the formation of
the first plastic hinge. This buckling mode normally has a relatively high
critical buckling load, V,,, giving a relatively high value for A,. Thus, this load
case commonly has only small magnifications of P-delta effects up to the load
level at which the first hinge forms.

Load cases involving lateral loads, such as lateral wind loads or crane horizontal
loads, deflect into a shape similar to the first mode of buckling, the
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asymmetrical mode shown in Figure 2.15. This buckling mode often has a
relatively low critical buckling load, V., giving a relatively low value for A.
Therefore, this load case commonly has significant magnification of P-delta
effects.

2.4.4 P.A effects in frames with plastic hinges

When a plastic hinge has formed such that the frame becomes asymmetrical,
there will be very significant sway deflections as the vertical load is increased,
as shown in Figure 2.14. This sway occurs because asymmetric frames deflect
horizontally when vertical loads are applied and the plastic hinge changes even
symmetric frames to being asymmetric in terms of stiffness.

In addition, the reduction of frame stiffness due to the formation of hinges
changes the buckling modes and reduces the value of V., so the magnification
of P-delta effects is increased.

Figure 2.17 Significant sway deflections due to plastic hinge formation
in a ‘gravity load’ combination (the lateral load is the very
small notional horizontal force)

2.4.5 Different load cases on the same structure

The magnitude of the P-delta effects determines whether these effects can be
neglected in the verification of a frame, or whether they must be explicitly
included in the verification.

It is the magnitude of the deflection, combined with the magnitude of the axial
load that is important. Therefore, the same frame may be insensitive to P-delta
effects in one load case, but sensitive to P-delta effects in another load case.
For example, a frame loaded so that it deflects symmetrically, such as the frame
in Figure 2.7, might be relatively insensitive to P-delta effects because the
deflection of the apex does not affect the forces and moments much. This is
because the column spread is equal and opposite, so there is not a tendency to
fall over sideways. However, the same frame loaded so that it deflects
asymmetrically, such as the frame in Figure 2.7, might be relatively sensitive to
P-deita because the sway causes a tendency to fall over sideways. This
difference in sensitivity for symmetric and asymmetric load cases is common in
portal structures with either single-span or multi-span frames.

2.4.6 Differences between portals and multi-storey frames

The differences between the stability checks for portals and the stability checks
for multi-storey frames often cause confusion. The reason for different checks
is because of the difference between the P-delta effects of the axial compression
in the beams of multi-storey frames and the P-delta effects of axial compression
in portal rafters.
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The bending moment diagram for a multi-storey frame is shown in Figure 2.18.
The bending moments in the columns induce shear forces in the columns that
act in opposite directions above and below each beam. These opposing shear
forces tend to cancel out, so the axial force induced in the floor beams to
maintain horizontal equilibrium is small. These forces are shown in Figure
2.19. In addition, the span/depth ratio of floor beams is normally much less
than the span/depth ratio of portal rafters. This is because floor loading is
much greater than normal portal roof loading and floors generally have greater
stiffness requirements to limit deflections or vibrations.  Therefore the
second-order effects in the floor beams in multi-storey frames of modest spans
are usually so small that they do not affect the stability of the frame.

The formula for calculating A, for multi-storey buildings in Clause 2.4.2.6 of
BS 5950-1 is acceptable for multi-storey buildings, but not acceptable for
calculating A, for single-storey portal frames because it ignores any
second-order effects in the beams.

-
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Figure 2.18 Typical bending moments in a rigidly-jointed multi-storey

frame
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Figure 2.19 Column shear and beam axial forces in a rigidly-jointed
multi-storey frame
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3 SWAY-CHECK METHOD

3.1 Introduction

The Sway-check method for checking the in-plane stability of a portal frame
requires only simple analysis techniques. The method is derived from the
in-plane stability checks of the 1990 version of BS 5950-1. It applies to
pitched-roof, monopitch and flat-roofed portal frames. The check identifies
frames in which the second-order effects in the gravity load case (1.4 Dead
Load + 1.6 Live Load) are sufficiently small that they may be ignored. This
restriction is achieved by the geometrical limitations described in Section 3.2
and by a check on sway stiffness.

The method may be applied either by:
e the 4/1000 check (Section 3.3) or

e the Formula method (Section 3.4).
For multi-span frames, the rafters in internal spans must be checked by the
snap-through check (Section 3.5).

This method is not suitable for tied portals (see Section 5.3.5).

3.2 Geometrical limitations

The Sway-check method of BS 5950-1 is only valid when applied to frames in
which the spans comply with the following limitations, shown in Figure 3.1.
These limits are defined in BS 5950-1 Section 5.5.4.2.1.

o L <5h
e h <L/4 and
o (h/s) +(h /s)" < 0.5 for asymmetric rafters
where:
L is the span, taken as between centre-lines of the columns

h is the column height, taken as the height from the top of the
foundation to the point of intersection of the centre-line of the rafter
and the centre-line of the column; and

h., s, and s, are as defined in Figure 3.1.
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Figure 3.1 Geometric parameters for single-span frames

Where the internal columns are of similar stiffness to the external columns, each
span should be considered as if it were a separate single span frame.

Where the internal columns are significantly more flexible than the external
columns, the height & can be taken from a straight line between the column
bases, as shown in Figure 3.2. A typical example would be a frame using UBs
for the external columns but UCs for the internal columns.

Where valleys are supported on valley beams, the Sway-check method may be
used, provided that the above limitations are observed. Although there is no
column, column height must be assumed. This height is the distance from the
intersection of the rafters at the valley above the straight line between the
column bases (see Figure 3.2).

3.3 The h/1000 check
3.3.1 General

The stiffness of the frame is assessed by a check on the sway deflection due to
the notional horizontal forces.

The design steps for ‘gravity load’ cases, as defined in BS 5950-1
Clause 5.5.4.2.2, are given in Section 3.3.2. The design steps for ‘horizontal
load’ cases, as defined in BS 5950-1 Clause 5.5.4.2.3, are given in
Section 3.3.3.
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Figure 3.2 Geometry of frames (h is measured from the top of the
foundation)

3.3.2 Gravity load cases — design steps

This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using the Sway-check method for gravity loads, as given in
Clause 5.5.4.2.2. The loads considered are those in Load combination 1 (see
Clauses 2.4.1.2 of BS 5950-1) and Crane combination 1 (see Clause 2.4.1.3 of

BS 5950-1).

In the design check, notional horizontal forces are considered. Clause 5.5.4.2.2
states that the notional horizontal deflections, &, should be calculated using the
bare steel frame alone, ignoring any stiffening effects reducing sway, such as
plan bracing in the roof or roof sheeting. This is because the sway deflection is
acting as an indicator of the sensitivity of the frame to P-delta effects in the
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symmetric mode of failure shown in Figure 3.3. In this symmetric mode of
failure, roof plan-bracing or roof sheeting will give very little assistance to the
action of the bare steel frame.

Figure 3.3 Symmetric mode of failure

Out-of-plane stability of members must also be checked, as required by
BS 5950-1, Chapters 4 and 5, but is outside the scope of this document.

Note that the gravity load case is not suitable for stability portal frames used
instead of cross bracing, which should be designed as a lateral load case as
Section 3.3.3 or by the Amplified Moment method or Second-order analysis.

An alternative method of checking the frame stiffness using the span to depth
ratio of the rafters is given in Section 3.4.

Design steps for plastic design
1. Check that the geometry of the frame is within the geometrical limits (see

Section 3.2). If all the spans in the frame are satisfactory, the Sway-check
method may be used for this frame.

2. Check the sway stiffness of the frame.

(a) Calculate the notional horizontal forces (see Section 1.6). For this
check (which is a check for the critical buckling ratio, A.) 0.5% of
vertical crane loads should be included if applicable.

(b) Apply the notional horizontal forces in-plane (all in one direction) to
the bare steel frame and calculate the column top deflections, o, as
shown in Figure 3.4.

(c) Check that the column top deflections & do not exceed /1000, where
h is the height of the column from the top of the foundation to the
point of intersection of the rafter centre-line and the column centre-
line. Note that the stiffness of the cladding (or other structure giving
sway stiffness not arising from the portal frame) must not be
considered when calculating &.

If all the column deflections in the frame satisfy the above, the Sway-check

method is valid for the frame. In this case, the value of A, the required
load factor for frame stability, may be taken as 1.0 for the gravity load
case.
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Figure 3.4 Deflection from notional horizontal forces (NHF)

3. For frames of three or more bays, check the snap-through stability (see
Section 3.5).

4. Carry out a plastic analysis of the frame.

Apply the gravity loads together with the notional horizontal forces (see
Section 1.6) to the frame. In asymmetric frames, it will generally be
necessary to apply two load cases, one with the NHF in one direction and
the other with the NHF in the other direction to ensure that the most
unfavourable load case is applied.

5. Check the strength of the frame.

Calculate the plastic collapse factor, A, (for both directions of NHF where
these have been applied as two load cases), and check that 4, > 4, (=1.0).

Design steps for elastic design

Design steps 1, 2 and 3 for elastic design are the same as for plastic
design.

4. Carry out an elastic analysis of the frame.

Apply the gravity loads together with the notional horizontal forces to the
frame and calculaie the forces and moments around the frame. In
asymmetric frames, it will generally be necessary to apply two load cases,
one with the NHF in one direction and the other with the NHF in the other
direction to ensure that the most unfavourable load case is applied.

5. Check the strength of the frame.

Calculate and check the cross-sectional resistance using Clause 4.8 of
BS 5950-1.

3.3.3 Lateral load cases — design steps

This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using the Sway-check method for horizontal loads, as
Clause 5.5.4.2.3. It is applicable to frames where the applicability of the
Sway-check method has already been confirmed (Steps 1 and 2 of Section
3.3.2). The loads considered are those in Load combination 2 and Load
combination 3 (see Clauses 2.4.1.2 of BS 5950-1) and Crane combination 2 and
Crane combination 3 (see Clause 2.4.1.3 of BS 5950-1).

These load cases are those in which there are externally applied horizontal
forces acting in the plane of the frame, typified by the loads shown in Figure
3.5. It does not include load cases in which the only horizontal forces are the
notional horizontal forces arising from vertical loads on this frame.
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Figure 3.5 Typical externally applied horizontal forces

The mode of failure is the sway mode shown in Figure 3.6. In this mode, the
sway deflection causes P-delta effects that subject the frame to moments and
forces greater than those calculated by first-order analysis. Therefore, the
resistance of the frame must exceed the resistance required by first-order
analysis.

Figure 3.6 Sway mode of failure

Clause 5.5.4.2.3 states that, when calculating the deflections for the sway case,
the sway stiffness of other structure, plan bracing and roof-sheeting may be
included. The inclusion of the stiffness of the cladding, etc. should, however,
only be considered if it can be guaranteed to remain throughout the life of the
structure.  Where sheeting is used to provide stiffness, these structural
requirements must be noted in the Health and Safety File required under the
CDM regulations.

Member out-of-plane stability must also be checked as required by BS 5950-1
Chapter 4 and 5, but is outside the scope of this document.

Design steps for plastic design

1. Calculate the approximate critical buckling ratio for the Sway-check
method, A, for the frame.

(a) Calculate the notional horizontal forces from the loads applied in the
load combination being analysed (see Section 1.6). For this check
0.5% of vertical crane loads should be included.

(b) Apply the notional horizontal forces in-plane (all in one direction) to
the frame and calculate the column top deflections &. (As noted
above, the stiffness of any associated structure or cladding that reduces
the column top deflections may be included in the calculation of the
column top deflections.)
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(c) Calculate 4, = _h_

2006

where £ is the height of the individual column.

A 1s an approximation to the critical buckling ratio for the sway mode
of buckling shown in Figure 2.12. A is calculated from the sway
deflection caused by application of the notional horizontal forces
derived from this load case.

Where A is less than 5.0, the Sway-check method should not be used.

2. Calculate the required load factor A, for frame stability.

lSC
Ao =
Ay —1

sC

If the loads are such that the axial forces in all the rafters and columns are
tensile, then the required load factor A should be taken as 1.0

3. Carry out a plastic analysis of the frame.
Apply the gravity and horizontal loads to the frame, without any notional
horizontal forces.
4. Check the strength of the frame.
(a) Calculate the plastic collapse factor A, and check that 4, > A..
(b) Check the strength and out-of-plane stability at A,.

Design steps for elastic design
Design steps 1 and 2 for elastic design are the same as for plastic design.

3. Carry out an elastic analysis of the frame.

Apply the gravity and horizontal loads to the frame without any notional
horizontal forces and calculate the forces and moments around the frame.

4. Check the strength of the frame.
(a) Calculate and check the cross-sectional resistance using Clauses 4.8 of

BS 5950-1 and using amplified moments and forces, taken as the
values given by linear elastic analysis multiplied by A,.

(b) Check the out-of-plane stability at A,.

3.3.4 Base stiffness for calculation of & from the notional
horizontal forces

BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be

assumed in design. The provisions for ULS analysis may be used in the

analysis model for the deflection & caused by the notional horizontal forces. It

is important to note that the Sway-check is to check the stiffness of the frame at

ULS, so only the ULS base stiffness values may be used, not the SLS values.
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Therefore, the following base stiffnesses may be used:

’

Base with a pin or rocker

The base stiffness should be taken as zero in the calculation of 6.

Nominally pinned base

The base stiffness may be taken as 10% of the column stiffness for the
calculation of 6. For the same frame, the base moments transmitted to the
foundation may be taken as zero provided the ULS analysis of the frame, from
which the moments and forces around the frame are found, assumes that the
bases are pinned.

Nominal semi-rigid base

A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis. Therefore, the base stiffness may
be taken as 20% of the column stiffness for the calculation of o, provided that
the foundations are designed to carry the moments from the ULS global analysis
for every load case; there is a cost implication.

Nominally rigid base

The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases. Therefore,
the base stiffness may be taken as equal to the column stiffness for the
calculation of 5. Note that the bases should not be assumed to be rigid for this
check.

3.4 The formula method
3.4.1 General

The Ly/D formula is a stiffness check which is approximately equivalent to the
Sway-check by calculating deflections in Section 3.3. The stiffness of the frame
is assessed by a formula. This formula was derived for regular frames with
columns at every valley and with roof load as the only imposed load. Thus the
application of this method is restricted to frames that are not subject to loads
from crane gantries or other concentrated loads larger than those from purlins.

3.4.2 Gravity load cases — design steps

This check is for load cases with no externally applied horizontal loads other
than the notional horizontal forces (NHF).

Note that this check is not suitable for stability portal frames used instead of
cross-bracing, which should be designed for a lateral load case (see
Section 3.4.3) or by the Amplified Moment method or Second-order analysis.

Design steps for plastic design and elastic design

The design steps for both plastic and elastic design are the same as for the
h/1000 method (see Section 3.3.2), except that the check on sway stiffness,
Step 2, is replaced by a limitation on the span to depth ratio of the rafters,
based on an expression that involves the geometry of the frame, the stiffness of
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the columns and rafters and the strength of the rafters.

becomes:

Check that the span to depth ratio of the rafter satisfies:

Ly _ 44L[ p } 275
D  Qh|4+pL /L]l p,
in which:
2D
L, = L-| —|L,
D, +D,
21, || L )
P = — | for a single-span frame
I, h
I. || L .
P = |— || — | for a multi-span frame
I, |Lh
£2  is the arching ratio = W, /W,
where

D is the cross-section depth of the rafter

Step 2 of Section 3.3.2

D, s the additional depth of the haunch (see Figure 3.7)

D,  is the depth of the rafter, allowing for its slope (see Figure 3.7)

h is the main column height

I is the in-plane second moment of area of the column (taken as zero if
the column is not rigidly connected to the rafter, or if the rafter is
supported on a valley beam)

I is the in-plane second moment of area of the rafter

L is the span of the bay

L, s the effective span of the bay

L,  is the length of the haunch (see Figure 3.7)

L. 1is the total developed length of the rafters see (Figure 3.8)

p,. s the design strength of the rafters in N/mm’

beam of span L (see Figure 3.9)

W, s the value of W, for plastic failure of the rafters as a fixed-ended

W is the total factored vertical load on the rafters of the bay (see Figure

3.9).

If the two columns or the two rafters of a bay differ, the mean value of I/l

should be used.

If the haunches at each side of the bay are different, the mean value of L,

should be used.
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The strength checks for both plastic and elastic design are carried out in the
same way as Steps 3 and 4 of the 4/1000 method.

(—Lh_)‘

141

Figure 3.7 Dimensions of a haunch

%\»

Figure 3.8 Developed length of rafter

WI’
le L |
I 1
WO
— =

Figure 3.9 [Loads for calculating the arching ratios
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3.4.3 Lateral load cases — design steps

Lateral load cases are load cases in which there are externally applied horizontal
forces acting in the plane of the frame. The formula method is not for load
cases in which the only horizontal forces are the notional horizontal forces
arising from vertical loads applied to the portal. The mode of failure is that
shown in Figure 3.6. In this mode, the sway deflection causes P-delta effects as
subject the frame to moments and forces greater than those calculated by
first-order analysis.

Design steps for plastic design and elastic design

The design steps for both plastic and elastic design are the same as for the
h/1000 method (see Section 3.3.3), except that approximate critical buckling
ratio for the Sway-check method, A_, is calculated from a formula that involves
the same parameters as those used for the L,/D formula for the gravity load case
(see Section 3.4.2). Step 1 of the method given in Section 3.3.3 becomes:

Calculate the approximate critical buckling ratio

., _ 220DL p 2751
* OhL, | 4+pL, /L || p, |

Where /1 is less than 5.0, the Sway-check method should not be used.

If the wind loads are such that the axial forces in the rafters are tensile, then the
required load factor A, should be taken as 1.0 because tensile forces cause no
additional destabilising forces.

3.5 Snap-through check

The snap-through check, in BS 5950-1 Clause 5.5.4.3, is to check that internal
spans of a multi-span frame are adequately modelled in a first-order analysis.

In pitched-roof portals, gravity loads applied to the rafters cause the ends of the
rafters to spread as the rafter deflects downwards, see Figure 3.10. In
multi-span frames, the internal spans are restricted from spreading by the
stiffness of the external spans. The horizontal reaction from the external spans
coupled with the rise of the rafters in the internal span causes an arching action
in the internal span. This arching action means that the vertical load capacity is
greater than the capacity due to bending alone of the rafters. However, this
increased capacity depends on the restraint from the external spans. This
restraint will not be available if the stiffness of the frame is too low.

Figure 3.10 Rafter spread in multi-span frames
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The formula in BS 5950-1 Clause 5.5.4.3 defines a limit to the span to depth
ratio of the rafter to ensure adequate stiffness, expressed as:

L I
_E_ < M 1+_C ﬁtanzg
D 4(02-1) I )p,

in which the symbols are as defined in Section 3.4, except for & which is
defined below.

o is the slope of the rafters for a symmetrical ridged span.
] = tan" (2h/L) for other roof shapes
where:

h is defined in Figure 3.1 and Figure 3.2.

T

Where the arching ratio (2 is less than 1.0, no limit need be placed on L,/D
because the vertical load capacity from bending alone is more than sufficient.

The L,/D formula in the 2000 issue of BS 5950, given above, differs slightly
from the 1990 issue in that (2 appears only once in the formula in 2000 issue.
This change has been made to ensure that the elastic critical buckling factor, A_,

remains equal to or greater than 10, to ensure that the second-order effects are
insignificant.

The Snap-through check is most likely to be significant where the rafters in
internal spans have a lower plastic moment of resistance than required for
external spans. The lower moment resistance would cause more of the vertical
loads to be carried by arching action, which creates significant axial thrusts in
the rafters and could cause snap-through (see Section 2.4.3).
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4  AMPLIFIED MOMENTS METHOD

4.1 Application — design steps

The amplified moment method is appropriate where the frame does not meet the
Sway-check limitations. It permits the calculation of the load factor for frame
stability, A,, which is used to account for the deflections of the frame under
load. The method requires the determination of the lowest critical buckling
ratio, A, for the particular load case on the frame. No method of determining
A is given in BS 5950-1.

There is a limit on the application of the method. If A, < 4.6, the frame is too
flexible to be designed using this method. If A, > 10, the frame is considered
to be ‘stiff” and 4, is taken as 1.0.

This method is not suitable in general for tied portals because it does not
account for non-linearity in the rafter-tie system (see Section 5.3.5).

This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1, using the Amplified moments method, as in Clause 5.5.4.4 of
BS 5950-1.

In BS 5950-1, the critical buckling ratio, A, from the lowest mode of buckling
is required, as it is possible to produce unconservative designs if higher modes
are used. The lowest mode is usually the sway mode. The Amplified Moments
Method is most accurate when the collapse mode of the frame is the same as the
buckling mode from which A, is derived. Therefore, the Amplified Moments
method is most accurate for load cases causing deflection in a sway mode, as
exemplified by Figure 2.6. For load cases causing deflection in the symmetrical
mode, the Amplified Moment method is relatively conservative because the
deflection mode is similar to a higher mode of buckling.

The Snap-through check of Clause 5.5.4.3 of BS 5950-1 does not need to be
applied when using the Amplified moment method.

Out-of-plane stability members must also be checked as required by BS 5950-1
Chapters 4 and 5, but this is outside the scope of this document.

Design steps for plastic design

1. Calculate the critical buckling ratio, A, for the lowest buckling mode from
the load case being analysed. See Section 4.3.3 or Section 4.3.4.

2. Calculate the required load factor for frame stability, A;:

if A > 10 A, = 1.0
0-94,
if 10 > A, >4.6 A =
Ao —1

cr

Note: if A, < 4.6 the method is not applicable.

3. Carry out a plastic analysis of the frame.
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Apply the loads to the frame. For load combinations other than Load
combinations 1 (see Clause 2.4.1.2 of BS 5950-1), the notional horizontal
forces need not be applied (see Clause 2.4.2.4 of BS 5950-1). Where NHF
are applied to asymmetric frames or symmetric frames with asymmetric
loading, it will generally be necessary to apply two load cases, one with the
NHF in one direction and the other with the NHF in the other direction to
ensure that the most unfavourable load case is applied.

4. Check the strength of the frame
(a) Calculate 4, and check that A, > 4,.

(b) Check the member strength and out-of-plane stability at A,

Design steps for elastic design
Design steps 1 and 2 for elastic design are the same as for plastic design.

3. Carry out an elastic analysis of the frame, applying the loads as for plastic
design.
Calculate the forces and moments around the frame using linear elastic
analysis (first-order analysis).

4. Check the strength of the frame

(a) Where A, > 1.0, calculate amplified moments and forces, taken as the
values given by linear elastic analysis multiplied by A..

(b) Check the cross-sectional resistances using the amplified moments and
forces using BS 5950-1 Clauses 4.8.

4.2 Background to method

The Amplified moment method is based on the Merchant-Rankine®**6”
equation as modified by Wood®. It is the same method as used for plastic
design of multi-storey frames in Clause 5.7 of the 1990 issue of BS 5950-1.

The Merchant-Rankine equation for predicting the load factor against failure,
accounting for second-order effects, is:

1 1 1
_—t = —
Aa Ay A
where
A, is the elastic critical buckling factor =V_/V
A, s the plastic collapse factor = V,,/Vy; ¢

A is the load factor against failure, accounting for second-order stability
effects = V,/V

in which:

V.. 1is the elastic critical buckling load of the lowest mode of the bare
frame

Vv

i 1s load to cause plastic collapse of the frame in the absence of second

order stability effects

34



V;  is the failure load accounting for second-order stability effects
Viis 18 Ultimate Limit State load for the load case being considered.

Note that V}, differs from V5 in that V[, is the load that the frame can carry at
plastic collapse (according to first order calculations) whereas Vi is the load
that is applied at ULS.

The distribution of load in V,, V,; and V; should be the same as the distribution
of load in V.

For A; > 1.0, the Merchant-Rankine equation reduces to:

lcr
A 2

S

cr

Wood® recommended that the beneficial effects of cladding and strain
hardening should be allowed for by the following modified version of the
Merchant-Ranking criterion:

A
For 4<-% <10, A, =4,(09+2, /4,)
A

P

This equation can be re-written in the form of the Merchant-Ranking equation:

1 09 1
_— — et —_—

Ac A, Ay
As explained in Kirby and Nethercot, this can be expressed for As > 1.0 as the

requirement that:

094,
For 10> 4., 24.6, A,>
Ao —1

cr

in which A_ is taken as the value for the lowest buckling mode of the bare
frame.

This requirement is generalised in Clause 5.5.4.4 of BS 5950-1 as:
A= 0.9 A, /(A -1)

so that it can be applied to both plastic and elastic design.

4.3 Calculation of A, for BS 5950-1
4.3.1 General

The value of 4, for use in Clause 5.5.4.4 must be the true value, not the
approximate value derived from the formulae in Chapters 2 or 5 of BS5950-1.

The elastic critical buckling load V,, or the elastic critical buckling factor A, for
the first mode will be available in numerous software packages that perform

elastic analysis. The value of A, is calculated for the frame assuming it is
entirely elastic and that no plastic hinges exist.

The value of A, depends on the magnitude of the applied load. Therefore,
unless the lowest value of 4 from all load combinations is used throughout, the
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value of A, used in the equation for A must be calculated for each load
combination, giving different values of A_for each load combination.

4.3.2 Structural details that lower the value of A,

The details of frames can affect the stability significantly. Where connections
are not stiff moment resisting connections, or where the arrangement of a frame
is irregular, the effects on stability should be carefully considered.

Portals are sometimes detailed with pin-ended props serving as the internal
columns. A pin-ended prop tends to destabilise the whole structure because any
lateral displacement causes the prop to induce an additional lateral load, instead
of the restoring shear that would be induced by a continuous column, (see
Davies®®). Therefore, any pin-ended members must be correctly modelled as
pin-ended.

Valley beams do not provide any stabilising effect to the whole structure, thus
they should be modelled accordingly, e.g. as sliding supports. If a valley beam
is free to twist at the frame it supports and if there is no lateral restraint to the
top flange at this point, then the valley beam will act as a very short pin-ended
prop and destabilise the frame, as discussed by Davies.

4.3.3 Computer solutions for A,

Computer solutions will normally be preferable for design office use.

The most obvious differences between the various available computer solutions
are the differences in the output. The principal differences are the number of
buckling modes calculated and the output of the buckling mode shapes.

The buckling modes may be expressed as loads, V,,, or as the ratio of (buckling
load)/(applied load), A, as explained in Section 2.3. Only the first buckling
mode is required for the Amplified Moment method. However, it can be
helpful to the designer to know the mode shape of higher modes if A is
unpleasantly low. The mode shape helps to show how and where to stiffen the
structure.

4.3.4 Solutions without a computer

Although a computer solution will normally be preferable, stability functions
can be used to calculate the elastic critical buckling loads of frame structures.
Unfortunately, a rigorous solution is long and complicated.

For hand calculations using stability functions, acceptable approximations may
be introduced by making the following assumptions:

(i) The elastic critical buckling load is not affected by the distribution of
transverse load along the members. Only the axial loads need be
considered. This is an old and well-respected assumption.

(ii) The maximum axial load in each member is assumed to act along its full
length. This is a conservative assumption.

(iii) The stiffening effect of haunches is ignored. This is a conservative
assumption.

Axial loads should be calculated from an elastic analysis. They may be
calculated from standard results, as illustrated in References 9, 10, 11,
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assuming fully pinned/fixed bases for the buckling analysis of frames with
nominally pinned/fixed bases.

To reduce the calculation to a simple process suitable for design office use,
Davies™® used stability functions to produce simple formulae to calculate the
approximate buckling load of portal frames with pinned or infinitely rigid bases.
The original work by Davies on stability of portal frames was extended by
King!"? to account for the partial fixity of nominally pinned bases and the slight
flexibility of nominally rigid bases. The work of Davies and King is
summarised in Section 4.4 below.

The formula in BS 5950-1, Clause 2.4.2.6, is not valid for single-storey portals
as it ignores the compression in the rafters. That equation is intended for
multi-storey buildings, not single-storey pitched-roof portals.

4.3.5 Base stiffness for calculation of A,

BS 5950-1, Clause 5.1.3, gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model for A,. It is important to note that the Amplified Moment
method uses the stiffness of the frame at ULS, so only the ULS base stiffness
values may be used, not the SLS values.

Therefore the following base stiffnesses may be used:

Base with a pin or rocker
The base stiffness should be taken as zero in the calculation of A.

Nominally pinned base

The base stiffness may be taken as 10% of the column stiffness for the
calculation of A,. For the same frame, the base moments transmitted to the
foundation may be taken as zero, provided that the ULS analysis of the frame,
from which the moments and forces around the frame are found, assumes that
the bases are pinned.

Nominal semi-rigid base

A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis. Therefore, for the calculation of
A, the base stiffness may be taken as 20% of the column stiffness but at the
cost of designing the foundations to carry the moments from the ULS global
analysis for every load case.

Nominally rigid base

The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases. Therefore,
the base stiffness may be taken as equal to the column stiffness for the
calculation of A,. Note that the bases should not be assumed to be rigid for this
check.

The above assumptions have been used in deriving the approximate formulae for
A given in Section 4.4.
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4.4 Simplified hand solutions for Ac
4.4.1 General

This section is from Davies®®” with the extensions of Davies’ work to other
base conditions by King!'?,

In this method, the frame is considered as a series of sub-divisions (see Figure
4.1) including:

(i) Rafter pairs (see Section 4.4.2).
(i) External column + rafter (see Section 4.4.3).
(iii) Internal column + rafter each side (see Section 4.4.4).

(iv) Equivalent frame for frames with props or valley beams (see
Section 4.4.5).

For each ULS load combination analysed, A. should be found for each of the
above sub-divisions and the lowest A should be used throughout the structure
for that particular load combination. (The very lowest A could be used for all
load combinations, but it would result in a conservative design).

Column and rafter loads should be the values calculated by elastic analysis,
which may be found by first-order computer analysis or by the formulae in
reference books™'™!!,

Prmmmmmmm—— = Rafter pairs

t
]

Internal column
External column + rafter each side
r—‘“y/'l+rafter o= ===-= - 0

Props

Valtey beams

Figure 4.1 Sub-divisions of frames for analysis without computer
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4.4.2 Rafter pairs

This Section checks the ‘rafter pair’ sub-divisions of the structure.

It checks that the ‘arch’ formed by each rafter pair does not collapse; see Figure
4.2.

The theory is due to Horne™* and forms the basis of the rules of Clause 5.5.4.3
of BS 5950-1. It is re-expressed by Davies!”.

For roof slopes in the range 0 < 6 < 20°,

4 1
P {u} Ll 275 Lo
L, -1 1, || py

T

where:
Ly is the effective span L-L,,

and other symbols are as defined in Section 3.4.2, except for 8 which is defined
in Section 3.5.

Figure 4.2 Arching failure of rafters

4.4.3 External column and rafter

This checks the ‘external column and rafter’ sub-divisions of the structure. The
theory is due to Davies, but modified to include an explicit column base
stiffness in (b) and (c) below.

(@) Truly pinned bases, or bases with rockers, as Clause 5.1.3.1 of
BS 5950-1.
3EI

T

Z’Cr
s{OJPrs + (1 + EJPJZ}
R

This may be expressed in terms of the rafter and column Euler buckling loads
as:

A = !

cr
[ - J ( I 3 . 3 R )( < ]
r.crit c.crit
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(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1.
(4.2+0.4R)EI,

ACT
1.2
s{0.42Prs+[1.16+‘JPch}
R

This may be expressed in terms of the rafter and column Euler buckling loads
as:

(1+0.1R)

ﬂ'cr -
P, P,
( j+(29+27R{ J
Pr.crit Pc.crit

(¢) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1
5E(10 + 0.8R)

ﬂ'cr -
[SPJZ} (ahzj
+(2.6R+4)
Il’ IC

This may be expressed in terms of the rafter and column Euler buckling loads
as:

1 (1+0.08R)

cr P P
[ d J+@B+052R{ ¢ ]
Pr.crit PC.Cri!

Where (for the above expressions):

E is the Young’s modulus of steel = 205 kN/mm’
I is the rafter inertia in the plane of the portal
1. is the column inertia in the plane of the portal

is the rafter length along the slope (eaves to apex)

h is the column height

P~
[

R =

~
=

IC
colummn stiffness h c
rafier stiffness I,
s
P. s the axial compression in column from elastic analysis

Note: This differs from BS 5950-1 notation which defines P. as the capacity
of the compression member.

P, is the axial compression in rafter from elastic analysis
2
n EI,

P cerit = )
h

= Euler buckling load of the column
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Py = ~ = Euler buckling load of the rafter.

4.4.4 Internal column and rafter each side

This checks the ‘internal column and rafter’ sub-divisions of the structure. The
theory is as in Section 4.4.3 but modified for internal columns.

(@) Truly pinned bases, or bases with rockers, as Clause 5.1.3.1 of
BS 5950-1

1

Acr -
P, P P
[ il JR, +[ i ]Rr +(4, +3.3R, )[ c ]
Pr( .crit Prr.crit Pc.crit

which, in the case of identical rafter forces, sections and lengths gives:

A = !

cr Pr p
[ }+(4+3.3R2 )[ ¢ ]
Pr.crit Pc.crit

(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1
(1+0.1R,))

Acr -
P P P
[ o JR( +[ "—JRr +(2.9+2.7R, )( ¢ ]
Pr@ .crit Prr.crit Pc.crit

which in the case of identical rafter forces, sections and lengths gives

L (1+0.1R, )

cr Pr Pc
[ }+(2.9+2.7R2 ){ ]
Pr.crit Pc.cril

(c) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1
L (1+0.08R, )

v Prt’ Prr Pc
R, + R, +(0.8+0.52R, )
Pré’ .crit Prr.crit Pc.cril

which, in the case of identical rafter forces, sections and lengths gives

(1+0.8R,)

cr - Pr PC
{ J+(O.8+O.52R2 ){ ]
Pr.cril Pc.crit

The symbols for the above expressions are the same as in Section 4.4.3, except:

A

P, s the axial compression in left-hand rafter from elastic analysis

P. is the axial compression in right-hand rafter from elastic analysis
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P, ... is the Euler buckling load of left hand rafter = 7°El/s/
P,..; is the Euler buckling load of left hand rafter = 2°El. /s’
left hand rafter stiffness El. /s,
o total rafter stiffness - (EI w/s, + El /s, )
R _ right hand rafter stiffness _ El_ /sr
' total rafter stiffiess  (EI /s, + EI, /s, )
R, = column stiffness El_/h

total rafter stiffness  (EI,/s, + EI /s, )

I, is the left hand rafter inertia in the plane of the portal

L, is the right hand rafter inertia in the plane of the portal

S, is the left hand rafter length along the slope (valley to apex)

Sy is the right hand rafter length along the slope (valley to apex).

4.4.5 Portal frame with props or valley beams

The theory is due to Davies®™®”, but modified to include an explicit column

base stiffness in (b) and (c) below. It assumes that all the valleys are supported
either by props or by valley beams.

A simple equivalent frame with one column pinned top and bottom is used,
representing an end bay. This is loaded by a share (normally 50%) of the total
of all the prop loads in the frame on the pin-ended column. Assuming that the
internal column load is twice the external column load, the equivalent frame
prop load is NP,

where:
P.  is the axial compression in the external column from elastic analysis
N is the total number of props in the frame
The rafter beyond the first bay contributes little to the sway stability, so is

ignored.

Valley beams do not add appreciably to the stability of the portal and do not
destabilise it when well detailed with a rigid connection to the eaves.
Therefore, rigidly connected valley beams make no contribution to N. A portal
with valley beams but no props has N = 0.

(a) Truly pinned bases, or bases with rockers as Clause 5.1.3.1 of
BS 5950-1
3EI

r

cr

5, [0.3P, s, + L2 (N+1)P_h]
R

p

which may be expressed in terms of the Euler loads as
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1

Ao = A
Pl’ PC
( j+(4+3.3Rp)(N+1)( ]
P2r.crit Pc.crit
(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1
L (1+0.1R, )
Pl’ PC
[ J+(2.9+2.7Rp)(N+1)[ }
P2r.crit Pc.crit
(¢) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1
a B (1+ 0.08Rp )
: Pl’ PC
( J+(O.8+O.52Rp )(N+1)( }
P2r.crit Pc.crit

where, for rafters of equal cross-section and equal length
L is the rafter inertia in the plane of the frame

S is the length of rafter pair (i.e. eaves to apex to valley) but for

asymmetrical arrangements of rafters, /s, is the value that gives the

true ratio of column stiffness to stiffness of the pair of rafters
(length = sum of rafter lengths, i.e. eaves to apex to valley) for
rotation about the eaves.

Py i is the Euler critical buckling load of the pair of rafters adjacent to the

external column

1
(52 )2

stiffness of column
R = _ﬁ il — = (EI, [h)EI, /s,)
stiffness of rafter pair

for a symmetrical pair of rafters.
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5 SECOND-ORDER ANALYSIS

5.1 Introduction

Second-order analysis is the term used to describe analysis methods in which the
effects of increasing deflection under increasing load are considered explicitly in
the solution method, so that the results include the P.A (P-big delta) and P.6
(P-little delta) effects described in Section 2.4. The results will differ from the
results of first-order analysis by an amount dependent on the magnitude of the

P.A and P.¢ effects.

Second order analysis will normally be more accurate than first-order analysis
with magnification factors.

The method and limitations of a second order analysis should be clearly
understood before it is used and before resistance checks are applied to the
results.

5.2 Design steps

This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using second-order analysis, as Clause 5.5.4.5 of BS 5950-1. For
second-order analysis, A, is taken as 1.0.

Out-of-plane stability member must also be checked as required by BS 5950-1
Chapters 4 and 5, but is outside the scope of this document.

Design steps for plastic design
1. Carry out a plastic analysis of the frame.

Apply the loads to the frame. For load combinations other than Load
combination 1 (see Clause 2.4.1.2 of BS 5950-1), notional horizontal forces
(NHF) need not be applied (see Clause 2.4.2.4 of BS 5950-1). Where
NHF are applied to asymmetric frames or symmetric frames with
asymmetric loading, it will generally be necessary to apply two load cases,
one with the NHF in one direction and the other with the NHF in the other
direction to ensure that the most unfavourable load case is applied.

2. Check the strength of the frame

(a) Calculate A, and check that 4, > 1.0. Note that second-order analysis
should not give higher values of A, than first-order analysis

(b) Check the member strength and out-of-plane stability at 1.0 x ULS
loads.
Design steps for elastic design

1. Carry out an elastic analysis of the frame. Loading should be the same as
given in Step 1 for plastic design.

2. Calculate the moments and forces around the frame. Check the
cross-sectional resistances using BS 5950-1 Clause 4.8 using the output of
the second-order analysis at 1.0 x ULS loads.
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5.3 Structure model

5.3.1 Division of members into elements for P.3 effects

In second-order analysis of portal frames, all the members in a frame may need
to be divided into several elements along their lengths for an accurate analysis.
The reason is that P.d (P-little delta) effects described in Section 2.4.2 have a
significant influence on the behaviour of practical portal frames, but most
analysis methods do not allow for these effects within the model element. The
P.§ (P-little delta) effects are not the same as the P.A (P-big delta) effects
described in Section 2.4.3. Many software packages include modules of
‘P-delta’ analysis, but these are usually designed to consider the relative
displacements of the ends of the element only. This is the same as the P.4
(P-big delta) effects on the element. When a member is divided into a number
of elements, then the P.A4 effects of all the elements will approximate to the P.&
effects of the entire member. As the number of elements is increased, the
approximation is improved. It is recommended, as a simple guide, that
members should be divided into 10 elements for analysis of portal frames,
because portal members are commonly slender and P.§ effects are more
important on slender members.

There are analysis methods in which the P.§ effects are modelled within the
length of each element. In these methods, the coefficients of each of the
bending terms in the stiffness matrix are modified by factors similar to ‘stability
functions’ such as those published by Livesiey and Chandler"”. Where this
method is used, the member length need not be divided into numerous elements
to allow for P.S effects. Division of a member into elements may still be
required to provide nodes at which loads can be applied if loads are applied
within the length of a member. It is important that the designer is sure that this
‘stability function’ type method is incorporated in an analysis method before
deciding not to sub-divide members into 10 or more elements. An example of a
‘stability function’ type of solution is provided by the worked examples of the
‘hand’ method. In these examples, the stiffness of the members is reduced by a
factor (1 - Pys/P.), where Py is the axial compression at the Ultimate Limit
State and P, is the elastic critical buckling load of the member. Whilst this is
an approximation, it is an example of modification of the member stiffness by a
factor to allow for P.3 effects. An alternative factor that may be used is
(1- V'V = (1/4y), where Vs, Vi, and A are as defined in Section 2.3.

5.3.2 Initial imperfections of frames

All  frames must be designed to allow for initial imperfections.
BS 5950-1: 2000 requires that the effects of these imperfections are included by
application of the notional horizontal forces. These are taken at 0.5% of the
factored loads applied in Load combination 1 (gravity loads) in cases without
significant horizontal loads, as BS 5950-1 Section 2.4.2.4. Notional horizontal
forces are not applied in load combinations including horizontal loads.

The notional horizontal forces are assumed to act in any one direction, thus two
analyses are required, except for symmetrical frames with symmetrical loading.
In one analysis, the notional horizontal forces applied in one direction in the
plane of the portal frame, and in the other analysis, the forces are applied in the
opposite direction in the plane of the portal frame.
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5.3.3 Initial imperfections of members

In-plane buckling checks of members is covered in detail in Section 6. This
section only covers principles that affect the analysis model.

Where the buckling resistance of a member is to be checked by a method other
than direct application of the buckling checks in BS 5950-1, it is important that
the effect of residual stresses is included. This may be achieved by using initial
imperfections equivalent to those used in BS 5950-1, Annex C to define the
buckling curves.  Alternatively, the moment due to strut action can be
calculated from BS 5950-1 Annex C.3.

If initial imperfections of members are allowed for in the analysis model of a
complete frame, it should be remembered that these imperfections might be
either destabilising or stabilising, depending on the direction of the deflections
induced by each load combination. Numerous analyses for each load case may
be required to ensure that the worst case has been considered. Because of this,
it is recommended that the frame is analysed assuming initially perfect members
and that the initial imperfection effects are then added in the most unfavourable
direction to each individual member, in addition to the moments and forces
from the frame analysis.

5.3.4 Base stiffness

BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model. It is important to note that the second-order analysis uses the
stiffness of the frame at ULS, hence only the ULS base stiffness values may be
used, not the SLS values.

The following base stiffnesses may be used:

Base with a pin or rocker

The base stiffness should be taken as zero.

Nominally pinned base

If a column is nominally pin-connected to a foundation assuming that the base
moment is zero, the base should be assumed to be pinned in the global analysis.
Therefore, where the moment applied to the foundation is required to be zero,
the 10% column stiffness value cannot be applied in the global analysis.
However, the 10% column stiffness can be used in the calculations of stability
functions that allow for P.S (P-little delta) effects. This is the reason for the
reduction of the effective length of columns when -calculating P in
Appendix A.3.2, which is also referred to in Appendix B.3.2. The reduction of
effective length is also applicable in the internal column in-plane checks
recommended in Section 6.

Nominally semi-rigid base

A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis.
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Nominally rigid base

The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases.

5.3.5 Tied portals

Tied portals are especially sensitive to second-order effects because of the high
axial forces in the rafters. In addition, tie portals with low pitch rafters are
very sensitive to the vertical deflection of the apex. This is because the apex
acts as a central support to the rafters, which act as a two span beam supported
by the columns and the apex. The axial forces in the rafters are determined by
the vector component of the reaction from the rafters acting as a two-span
beam. Therefore, the axial forces are inversely proportional to the actual slope
of the rafters in their loaded position. As the apex deflects, the axial force in
the rafters must increase to provide the same vertical reaction at the apex. This
phenomenon is illustrated in B.5.3. It is a non-linear effect that must be
accounted for.

An additional consideration is that the rafters in a tied portal may be so shallow,
relative to their span from eaves to apex, that the deflections are significant.
Where this occurs, the curvature shortens the end to end distance of the rafter.
This effect adds to the apex drop. This curvature shortening effect is illustrated
in B.5.3. Itis another non-linear effect that must be accounted for.

Because of the above two non-linear effects, tied portals must be analysed using
routines that can model these non-linear effects. It is essential that designers
must check the functionality of their software with the suppliers before
designing tie portals. It is unlikely that any software that uses the original
geometry of the rafters throughout the analysis can be reliable for low pitch
rafters, unless an iterative modification of the rafter geometry is used at some
point in the analysis.

Some software packages use a system of modification to the stiffness matrix
while maintaining the original geometry of the model. This is often referred to
as ‘P-delta’ analysis. This type of analysis routine is not appropriate for
analysis of tied portals with low pitch rafters, because of the non-linearity,
unless a routine is added to account for this. Equally, routines that use stability
functions but retain the original geometry throughout the analysis cannot model
the non-linearity of the apex deflection and are not appropriate for portals with
low pitch rafters, a procedure is added to account for this.

5.4 Analysis methods
5.4.1 General

Second order analysis may be carried out by numerous methods, including:
e Closed solutions using a geometrical or algebraic function.
e  Matrix methods.

e  Energy methods.

It is important that the method chosen is suitable for the particular application.
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One of the most common cases of allowing for second-order effects is a strut
buckling curve. The resistance of the strut is reduced below its squash load by
the bending moments caused by the axial load. This is a case of second-order
analysis that can be performed using a geometrical function to produce a closed
solution. The classic solution is the Perry-Robertson solution, which uses a sine
curve to model the strut deflected form. However, it is not normally practical
to produce an accurate analysis of a frame using geometrical functions, although
an approximate analysis can be made using the first mode of frame buckling as
the geometrical function. An example of this method is the amplification of
sway effects in Clause 2.4.2.7 of BS 5950-1.

The more universally applicable method is by iterative application of matrix
analysis described in Section 5.4.2.

In the case of single-storey plastic portal frames, the energy method provides
one of the simplest solution techniques. Using the energy method, it is possible
to perform a second-order analysis without computer software, although the
solution is laborious and more conservative than a computer solution. Examples
of this method are given at the end of this document.

In iterative solutions, the number of iterations should be sufficient to ensure that
the stiffness of the frame is not overestimated as the loading approaches the
collapse load. The solution method should include an equilibrium check to
ensure that the applied loads are in equilibrium with the frame resistance within
a satisfactory tolerance.

5.4.2 Matrix methods

There are at least two matrix methods of second order analysis available. One
modifies the geometry after each load increment, and then recalculates the
stiffness matrix using the new geometry and unmodified member properties.
The other, often called P-delta analysis, uses the initial geometry throughout but
modifies the terms of the stiffness matrix according to the displacements and
axial load in each member but always referring to the original member
geometry. There are special requirements for modelling tied portals, which are
given in Section 5.3.5. It is unlikely that any routine using the initial geometry
can be reliable for tied portals with low pitches unless a separate iterative
procedure is used in addition.

Also, the analysis may be either elastic/perfectly-plastic or elasto-plastic (in
which the modulus of elasticity reduces to model the stress-strain behaviour in a
real member).

It is very important that a matrix method addresses all the issues raised in
Section 5.1. It is equally important to recognise that the overall frame
behaviour (the P.A effects) cannot be correctly calculated unless the member
effects (the P.o effects) are correctly included. For example, if the column of a
portal is modelled as one element, it will give unsafe answers unless the
stiffness is correctly modified to allow for the appropriate column buckling
mode.
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5.4.3 Energy methods

The energy method is a long-established method of structural analysis. The
method uses the principle of conservation of energy, equating the strain energy
in the structure under load with the potential energy given up by the load as the
structure deflects.

It is very important that an energy method addresses all the issues raised in
Section 5.1. It is equally important to recognise that the overall frame
behaviour (the P.A effects) cannot be correctly calculated unless the member
effects (the P.JS effects) are correctly included. For example, if the column of a
portal is modelled as one element, it will give unsafe answers unless the
stiffness is correctly modified to allow for the appropriate column buckling
mode.

The strain energy in the structure is given by the area under the load-deflection
diagram. This is illustrated for a typical single bay portal frame in Figure 5.1.
The load factors at the formation of the first and second hinges are denoted by

A and 4,.

A
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Figure 5.1 Typical load-deflection diagram

The second-order effects reduce the resistance of the frame to externally applied
loads. This is simply illustrated by the column of a portal frame. The rotation
of a typical exterior column is shown in Figure 5.2. In the deflected state, the
top of the column has moved down by &. This is mostly due to the rotation ¢
of the column top relative to the column base. In addition, the deflection ¢ is
partly due to the curvature of the column, which reduces the distance between
the top and the bottom of the column, causing the column top to move down.
This column top deflection moves the rafter shear force, V, downwards,
releasing potential energy that is not calculated in first-order analysis.
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Figure 5.2 Column top deflections

By the principal of conservation of energy, the potential energy released by a
given range of deflection is equal to the strain energy absorbed in the structure
over that same range of deflection. This may be written:
E, = E
where:

E, is the potential energy released

E; is the strain energy absorbed in the structure.

For a given range of deflection, some potential energy is released by
second-order deflections, which is defined here as E,;. The remaining potential
energy is released by first-order deflections and is defined here as Ej.
Therefore, we can write:

E = E, = E, + Ey

These energies are illustrated in Figure 5.3.
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Figure 5.3 £nergy

At any point on the load-deflection curve, the resistance to externally applied
loads can be found from the conservation of energy over an infinitesimal
increment of deflection, as shown in Figure 5.4.
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Figure 5.4 Energy over an increment of deflection

The energy equation is:

dE, = dE, + dE,

where, at the particular level of load being considered:

dE;
dE,;
dE,
A
w
da
P 2

d¢

dk

= [(Mdk) + IM,d6

= AZwdAa

= IP,s¢dg + ZI(P,ds)

is the first-order load factor at the load level considered
is the applied loads

is the increments of displacements at A;

is the axial loads in the member including the effect of the drop of the
apex

is the straight line distance between the ends of members (or parts of
members between hinges)

is the increment of shortening of the distance between the ends of the
members due to change of curvature

is the plastic moment reduced by axial force at the hinges
is the increments of rotation of the hinges

is the rotation of the member between the ‘frame unioaded’ position
and the position at 4;

is the increment of rotation of the members
is the first-order moments throughout the frame

is the increments of curvature.
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The second-order load factor at the particular level of load being considered is:

dE
Ay = /1[,[1—‘1;2}

The load factor at failure in each load case is taken as the maximum value of Ay
found for that load case.

The energy method is convenient for ‘hand’ calculations, as shown in
Appendices A and B. This application of the Energy Method is similar to the
method given by Horne and Morris™, but it is made more rigorous by including
the effects of P.d (P-little delta) in the members and by more rigorous
calculation of the deflections. The energy equations used in the hand method
are given in Appendix A.2.2.

The energy method has been calibrated with rigorous iterative second-order
elastic-plastic matrix analysis methods on frames in which the sway-check
deflections, & (calculated as in Section 3.3.2), do not exceed A4/500. This
implies that A is approximately 2.0. It is recommended that the method is not
applied for frames with greater flexibility without due caution. Frames that are
more flexible are generally inefficient and it is advisable either to stiffen the
frame or choose a stiffer structural concept.
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6 MEMBER CHECKS

6.1 General

This section describes the member checks that should be performed and how to
calculate the bending moment diagram used for these checks.

Section 6.2 provides a general introduction to the differences between the
first-order moments in initially straight members and the actual moments
occurring, including second-order effects. Section 6.3 describes the cases in
which the members may need in-plane buckling checks, even when the frame
has been proved to be stable in-plane.

6.2 Additional bending moments from strut action

The effects of both geometry and residual stresses must be included in member
design. BS 5950-1 uses the concept of an equivalent geometrical imperfection.

In the elastic domain, the following relationship can be proved by a closed
solution for a pin-ended member supporting both an axial compressive force and
a distributed lateral load in the form of a half sine curve, as shown in Figure
6.1

Figure 6.1 Additional deflections from strut action

The maximum moment is given by:

1
P

 R——

P

cr

+ M,

M = Px0p,+M, =Px(e;, +5,)

max

where:
P is the axial compressive force

€ is the initial imperfection
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M, s the first-order bending moment
&% is the deflection from the first-order moments
6, is the second-order deflection

P, is the Elastic Critical Buckling load.

Assuming that the above relationship applies to other patterns of loads and
moments, the equation can be used to study how the code value of strut
imperfection should be applied to a second-order analysis, that used initially
straight members.

The French NAD!™ to ENV1993-1-1"% gives a method of analysing members
with axial compression and bending that relies on this equation as an alternative
to ENV 1993-1-1 Clause 5.5.4.

Second-order analysis assuming initially straight members will calculate the
maximum moment as:

-
P
P

cr

M = Px(58,) + M,

Therefore the only difference between second order with the strut imperfection
and second-order without the strut imperfection is:

M Px(e,) ——0 Sin{lx—j

P

1 — ———

. )
Therefore, all that is needed to include the effect of the code strut imperfection
is to add the above moments to the second-order bending moments calculated
for initially straight members. In external columns of portals, this will usually
be demonstrably small. In internal columns with no applied moments, this is
the strut moment from the code imperfection. In rafters, this will add a very
small amount to the moments that could be considered to be covered by the
factor that allows for strain hardening and the increased reliability arising from
the redundancy of a plastic design.

6.3 In-plane member checks
6.3.1 General

For most structures, all the members resisting axial compression must be
checked to ensure adequate resistance to buckling about both the major and
minor axes. However, in portal frames checked for in-plane stability by the
methods defined in this publication, in-plane buckling of the members is not the
critical design case for many members. This Section gives guidance for the
majority of portal frames, that is the frames, in which the bending moments
around the frame, are predominantly from loads distributed along the rafters so
as to cause relatively large bending moments. In members with both:

(i) relatively low axial compression, and
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(ii) relatively large bending moments which occur away from the maximum
strut action moments at mid-length of members,

the strut action is so low relative to the maximum moments that buckling is not
the critical failure criterion. Simplified guidance is presented for common
portals in Section 6.3.2 and for tied portals in Section 6.3.3. The guidance is
very different for the rafters of these two types of frame.

6.3.2 Common portals

Common portals are portals without ties at or near rafter level. In these frames,
guidance on in-plane buckling checks may be simplified as follows:

Rafters and columns that resist the full haunch moment of the
adjoining rafter.

In these members, the bending moments at the ends of the members are very
large, but at mid-length the bending moment is much less. Examples are shown
in Figure 6.2.

-— - -1 -0

&M M
—>| [ >

Figure 6.2 Members with relatively low moments at mid-fength
compared with the ends

In these cases the strut action moment is at a maximum where the first-order
bending moments are approximately half the maximum. In addition, the strut
action moment is relatively small compared with the moment of resistance of
the section. Therefore, these members need not be checked for in-plane
buckling.

Columns that do not resist the full haunch moment of the adjoining
rafter.

In members that do not resist the full haunch moment of the adjoining rafter, it
is possible that the strut action moment is relatively large compared with the
applied bending moment. The principal example of this is the internal columns
of multi-span frames as shown in Figure 6.3. These members should be
checked for in-plane buckling. These members may be checked by BS 5950-1
Clause 4.8.3.3.2(a)(i) using a segment length, L, defined in BS 5950-1
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Clause 4.7.1.1, of the height from the base to the eaves in the absence of
intermediate in-plane restraint. The effective length, Lg, may be taken as:

Lg = 1.0L for truly pinned base columns
Lg = (0.85L for nominally pinned base columns
Lg = 0.7L for nominally fixed base columns.

These effective lengths are not from Annex E of BS 5950-1 because Annex E
assumes the adjoining beams remain generally elastic, which is not common in
portal rafter design.

The exceptions are columns that have sufficient bending capacity to resist the
full haunch moment. One example of this exception is where an extension of a
frame is constructed, so that the original external column has become the
internal column of the extended frame. Another example is where a column
supports rafters at levels so different that the column section is sufficient to
resist the full haunch bending moment and this section is continued to the
foundation, as shown in Figure 6.4.

Internal columns

Figure 6.3 /nternal columns in a typical multi-span frame

W\
W
W\
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1
1
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Figure 6.4 /nternal column supporting rafters at different levels

6.3.3 Tied portals

Tied portals are portal frames in which there is a tie at or near rafter level. The
tie at this level causes very high axial loads in the rafters and reduces the
bending moments in the rafters as shown in Figure 6.5.
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Figure 6.5 Tijed portal bending moments in the rafters

The bending moment near the mid-length of the rafter approaches the moment
of resistance of the rafter. This large bending moment occurs near the point of
maximum strut action, so the in-plane buckling of the rafter must be checked
with the coexistent bending moment diagram. This may be checked by
BS 5950-1 Clause 4.8.3 taking the effective length as the length along the rafter
from apex to eaves/valley. The member check may be made using BS 5950-1
Clause 4.8.3.3.2(a)(i) taking the rafter section as constant throughout the
effective length (i.e. ignoring the increase in section properties of the haunch),
using the bending moment diagram of the full length from apex to eaves/valley
to define the values of moment used in BS 5950-1, Table 26 and calculate m,.

6.4 Bending moments for frames using plastic
design
6.4.1 General

Where the in-plane stability of individual members of a frame should be
checked (see Section 6.3), the bending moments can be found directly from
elastic-plastic analysis.

Where elastic-plastic analysis has not been used, the moments may be calculated
approximately. This can be done by modifying the moments and forces from a
plastic analysis by multiplying by A,/4,. This is a method allowed in BS 5950-1
Clause 5.3.1 for calculating the bending moments for out-of-plane buckling.
Where this method is used, it must be remembered that the plastic hinges will
occur unless they can be proved not to occur. This can only be done by elastic
unloading calculations unless the reduction by A, /4, is clearly very large.
Unless the plastic hinges are demonstrated not to occur, the stability of the
members must be demonstrated assuming plastic hinges occur at the same points
as in the bending moment diagram at collapse.
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6.4.2 Sway-check and amplified moments methods

The bending moments around the frame at ULS, excluding the moments from
strut action, may be calculated as given below.

Where the analysis is by elastic-plastic analysis, the bending moment diagram
may be calculated by interpretation between the bending moments at the load
steps above and below ULS.

For other analysis techniques, the moments may be calculated approximately
(see Section 6.4.1) as:.

M s the design ULS moment at any point
M, is the bending moment at that point from the first-order plastic analysis
A is the required load factor (see below)

A, is the collapse factor from first-order plastic analysis.
The values of A, are given by:

(a) Sway-check method: Gravity loads
BS 5950-1 Section 5.5.4.2.2 gives:
A = 1.0 (see Section 3.3.2 and Section 3.4.2)

(b) Sway-check method: Horizontal loads
BS 5950-1 Section 5.5.4.2.3 gives:
A = Al (Ase = 1)
where:
A  may be recalculated for each load case, see Section 3.3.3 and
Section 3.4.3 .
(¢) Amplified moments method
BS 5950-1 Section 5.5.4.4 gives:

if A 2 10: A = 1.0

. 0941,

if 10 > A, = 4.6: A = —=L
Ay —1

where:

A, may be recalculated for each load case, see Section 4.1.

58



6.4.3 Second-order analysis by iterative methods

The bending moment diagram may be calculated by interpolation between the
moments calculated at the load steps above and below ULS.

6.4.4 Second-order analysis ‘by hand’

The bending moments for frames analysed by the ‘hand’ methods of Section 5
and Section 6 may be calculated as:

M = M]/AM
where:

M s the design bending moment at ULS at any point excluding the
effects of strut action

M, is the bending moment at that point in the plastic collapse mechanism

Am  is defined and the value of Ay calculated in Appendix A and
Appendix B. Note that A,/Ay is equivalent to A, in Section 6.3.2.

6.5 Bending moments for frames using elastic
design

BS 5950-1 Clause 5.5.2 required that the bending moments should be taken as
the values from linear elastic analysis multiplied by the required load factor A,.

Where the linear elastic analysis is first-order analysis, the values of A, may be
determined either by the sway-check method or the amplified moments method.

Where the linear elastic analysis is second-order analysis, the value of A, may
be taken as 1.0

6.6 Other member checks

Portal frames must satisfy all the relevant requirements of BS 5950-1, including
out-of-plane buckling checks. However, the purpose of this publication is to
give guidance on the in-plane stability of portal frames, so detailed guidance on
other checks is not included.
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APPENDIX A Second-order analysis of
common portals ‘by hand’

A.1 Range of application and design steps

This Appendix shows how second-order analysis may be performed without
second-order software for common forms of portal frames designed by plastic
design methods. These portals do not have ties at or near the rafter level.
Portals with ties at or near the rafter level should be checked using Appendix B.
It is recommended that this method is not used for frames for which the
deflection from a sway-check exceeds #/500, as explained in Section 5.4.3.

Design steps
The design steps are as follows:

1. Identify from the first order analysis:

o the plastic collapse mechanism

the hinge incremental rotations
o the axial forces in the members

o the load factor at the formation of the first hinge, 4, (excluding hinges at
bases where the moment of resistance of the base is less than the moment
of resistance of the columns)

o the plastic collapse factor, A,
e the deflections of the frame at A,.
2. Calculate the second-order deflections of the ‘elastic’ frame.

(a) Calculate the stiffness reduction factors to allow for P.J (P-little delta)
effects

(b) Calculate the second-order magnification factors for the ‘elastic’ frame

(c) Calculate the deflections of the ‘elastic’ frame. These are the values of
the deflections at 41 magnified to account for second-order effects.

3. Calculate the second-order deflections of the ‘plastic’ frame

(a) Calculate the stiffness reduction factors to allow for P. & (P-little delta)
effects

(b) Calculate the second-order magnification factor for the ‘plastic’ frame.
(c) Calculate the deflections of the ‘plastic’ frame from gravity loads.
(d) Calculate the deflections of the ‘plastic’ frame from horizontal loads.

4. Calculate the increased axial loads in the rafters to account for second-
order effects.

5. Sum the energies.
6. Calculate the reserve factor, Au.

7. Check that Ay > 1.0

63



A.2 Basis of method
A.2.1 General

In this method, the load factor of the frame is calculated by the energy method,
allowing for any strength reduction caused by second-order stability effects. It
is derived from the plastic collapse load factor A4, calculated by first-order
analysis.

This load factor may be called the ‘reserve factor at ULS’, Ay, defined as:

V2,P(ULS)

A =
Vs

where:

Vapwts) is the load predicted to cause failure of the frame including the
second-order effects, but calculated using the axial forces in the
members at the ULS level of load.

Vuis is the ULS load on the frame.

The factor, Ay, allows for the de-stabilising effects on the frame of second
order effects, including both P.§ effects and P.A effects described in
Sections 2.4.2 and 2.4.3 respectively. The P.5 and P.A4 effects are calculated
using the axial forces that occur in the frame at ULS, including the
second-order effect of any drop of the apex of the frame.

This reserve factor, Ay, must be equal to or greater than 1.0 to demonstrate that
the frame is stable at ULS.

The reserve factor Ay is not exactly the same as the failure factor, commonly
referred to as A, except in the case where Ay = 1.0. This is because Ar is
defined as:

where:
Ve is the failure load including second-order stability effects
Vuis is the ULS load on the frame.

The failure load V; is calculated using the axial forces at failure and, therefore,
the P.¢ effects arising from the axial forces at failure. This contrasts with Ay
which is calculated using the P.¢J effects from the axial forces at ULS. Where
the loading at ULS is equal to the loading at failure, Ay is equal to Ay.

The method uses the plastic collapse mechanism found by first-order analysis.
This is sufficiently accurate because there is very little difference between the
bending moment diagrams from first-order and second-order analysis. The
plastic hinges limit the bending moment diagram and prevent any significant
change of curvature along the members between the plastic hinges. Therefore,
the energy calculation can be made using only the deflections arising from the
rigid-body motions of the elements between the hinges. The energy calculation
is made using the deflected form of the plastic collapse mechanism to calculate
the second-order effects. The stiffness reduction to allow for P.¢ (P-little delta)
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effects, as described in Section 2.4.2 is made using the axial forces at ULS
calculated from first-order analysis.

This method is called a ‘hand’ method because it is possible to perform the
second-order analysis by this method without a computer. However, it will be
much easier if computer software is used for various steps, such as calculating
the deflections of the two different structure models used in the method. Hand
calculations will still be required to prepare the input data and combine the
output data.

A.2.2 Application of the energy method

The basis of the energy calculation is shown in Figure A.1. An increment of
deflection is considered at the formation of the collapse mechanism. The strain
energy dE, absorbed over this increment of deflection can be calculated from the
rotation of the hinges:

dE, = % M, do

The potential energy released by second-order effects can be calculated from the
rigid body rotations as shown in Figure A.2.

dEp2 = X P2 (@d@

dE, + E, = dE,

A
Load
Apbp—mmmmm e H
W— dEp o
f ————————————————————— -l
T b------
|
| 4 dEp
|
|
!
[
L 6p I
Deflection

Figure A.1 Energy over an increment of deflection at collapse
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Figure A.2 Potential energy release from second-order effects

The potential energy released by the loads at failure can be calculated from:

dEp] =

lMZWA

Therefore the conservation of energy that is:

dE, + dE,, = dE, can be written as:
A.MZWA + ZPZ ¢Sd¢ = ZMprdG

where:

Am

ad

is the reserve factor on the collapse mechanism at ULS (see
Section 5.2.1)

is the set of applied loads at ULS

is the set of incremental displacements of the applied loads in the
collapse mechanism including the P.J§ (P-little delta) effects.

is the set of axial forces in the members at ULS including
second order effects.

is the set of member lengths

is the set of member rotations at the onset of the collapse mechanism
allowing for the reduced stiffness of the members due to P.S (P-little
delta) effects

is the set of incremental member rotations in the collapse mechanism

is the set of plastic moments of resistance reduced by co-existent axial
force from first-order analysis

is the set of incremental hinge rotations in the collapse mechanism.

Noting that in the first-order collapse analysis:

IwA = IM,dO

giving:

zwA

=M, d6
A

p
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the requirement can be expressed as:

L [(zMyae)
w| 2 |+ TPygsdp = IM,.dO
lp
or
A
TM—(ZMprde) = IM, d6-3P,gsdg
p
Thus
=P, gsd
Ay = . 1_M
M, do

The minimum acceptable load factor at failure, Ay, is 1.0 for any load
combination.

This method of calculating Ay, is used in the worked examples.

A.2.3 Deflection calculations

The accuracy of the calculation depends on the angles ¢ shown in Figure A.2.
These deflections must allow for second-order effects, so wherever first-order
analysis is used, either the member stiffnesses must be reduced or the results
must be amplified.

This section shows how the deflections can be found with a combination of:
(i) ‘Elastic frame’ deflections

(i) ‘Plastic frame’ deflections.

The ‘elastic frame’ deflections are the deflections of the frame at the load
factors, A;, at which the first hinge is about to form. The frame behaviour up
to this point is elastic.

The ‘plastic frame’ deflections are the deflections of the frame at load factors
above A,. This means that the first hinge has formed and the frame is partially
plastic.

To make the calculation as simple as possible, it is most convenient to assume
that all the plastic hinges (except the final hinge that forms in any span to create
the collapse mechanism) occur at load factor A;. The deflected form of a
typical 2-bay frame is shown in Figure A.3.
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Undeflected form

Elastic deflections

Sepl 5ep2 5ep3

T

.

Elastic-plastic deflections

Figure A.3 Deflections of typical frame

In Figure A.7, &pl, &2 and Jgp3 are the sums of the elastic deflections and
the deflections after the plastic hinges have formed. The sum of the deflections
comprises:

(i) The ‘elastic frame’ deflections at load factor A,.

(i) The ‘plastic frame’ deflections from load factor A, to load factor A,, using
an elastic structure model with pins at the position of the plastic hinges.

The deflections are calculated by elastic analyses, as described in
Appendices A.3 and A .4.

A.2.4 Base stiffness

BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model. It is important to note that the second-order analysis uses the
stiffness of the frame at ULS, so only the ULS base stiffness values may be
used, not the SLS values.

Therefore the following base stiffnesses may be used:

Base with a pin or rocker
The base stiffness should be taken as zero.
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Nominally pinned base

If a column is nominally pin-connected to a foundation assuming that the base
moment is zero, the base should be assumed to be pinned in the global analysis.
Therefore, where the moment applied to the foundation is required to be zero,
the 10% column stiffness value cannot be applied in the global analysis.
However, the 10% column stiffness can be used in the calculations of stability
functions that allow for P.¢& (P-little delta) effects. This is the reason for the
reduction of the effective length of columns when calculating P, in A.3.2,
which is also referred to in B.3.2. The reduction of effective length is also
applicable in the internal column in-plane checks recommended in Section 6.

Nominally semi-rigid base
A nominal base stiffness of up to 20% of the column stiffness may be assumed

for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis.

Nominally rigid base

The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases.

A.3 Deflections of the ‘elastic’ frame

A.3.1 General

The deflections of the frame will be elastic until the first hinge forms at a load
factor A,. The deflections are referred to as the ‘elastic frame’ deflections.

The value of A, may be given by elastic-plastic analysis software or it may be
calculated from an elastic analysis of the frame. The load factor A, is the
lowest load factor at which the applied bending moment at any section of the
frame reaches the plastic moment of resistance, as Clause 4.8.2.3 of BS 5950-1.

The second-order deflections are calculated using the equation from
Section 2.4.3:

A A
5, = 6 _ Trerl +6, _ Ter2z
ﬂ’crl_—1 ﬂ'crz_1

Vertical deflections and eaves spread deflections are generally similar to the
symmetrical mode of buckling of the frame, so vertical and spread deflections
are treated as &, above. Sway deflections are generally similar to the sway
mode of buckling of the frame, so sway deflections are treated as &, above.

A.3.2 Reduction factor to allow for P.J (P-little delta) effects

The second-order effects within the member lengths reduce the effective
stiffness of the members, and this effect must be included in the analysis from
which the deflections are found. This is done by calculating a reduction factor
and then applying it to the gross inertia to give an effective inertia value for the
members, L.
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Rafters:

Reduction factor = (1 — Py.s/P.;

where:

Puyis is the axial compressive force in the member from ULS loads

L

calculated by first-order analysis. Py;s may be calculated by elastic
analysis, plastic analysis or elastic-plastic analysis. A consistent set of
forces from any of these analyses should be used throughout the
frame. Where columns support intermediate loads, for example from
cranes or mezzanine floors, these intermediate loads must be included
in PULS-

is taken as n’El/L*

= L,, the developed length of the rafters in the relevant span, see
Figure 3.8 for both the elastic frame and the °‘plastic frame in
multi-span frames and the ‘plastic’ frame for single-span frames.

= 0.5L, for single span ‘elastic’ frames only.

Hence, Ig = I (1 - Pys/P.y)

Columns:
Reduction factor = (1 — Pys/Py;

where:

PULS
Pcr

where:

R

(2

(2

is as defined for rafters

is taken as n’El/(oh)*

is the height from the base to the neutral axis of the rafter

= 2.0 for columns with truly pinned bases or rockers
= 1.7 for columns with nominally pinned bases
= 1.4 for columns with nominally fixed bases.

Hence, I = I(1 - Py.s/Pe)

A typical column supporting rafters at different levels is shown in Figure A.8.
The appropriate values of Py s and P, are those in the greater of

PULS
Pcr

P
] o { s ]
A PC" B
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P, s the axial compression in the column between the higher and the

lower rafters

P, + P is the axial compression in the column between the lower rafter

and the base

ha s the column height from the base to the higher rafter

hp is the column height from the base to the lower rafter.

Figure A.4 Column supporting rafters at different levels

For columns supporting intermediate vertical loads such as crane loads and
mezzanine floors without continuous connection into the column, the maximum
column force should be used.

A.3.3 Second-order magnification factors, Acr/(Acr-1)

Vertical deflections and eaves spread deflections

The second-order deflections are greater than the first-order deflections, &;, by

the

factor Agy/(Agn — 1).

A is taken as the minimum of either:

the minimum value of P./Py; s for any pair of rafters, where P, and Py 5 are
taken as for rafters in A.3.2., or

2P, /2Py 5 for the columns

where:

TP, is the sum of the values of P, for all the columns in the frame, where
P, is taken as for columns in A.3.2

> Py.s is the sum of the axial forces in all the columns in the frame.

Sway deflections

The second-order deflections are greater than the first-order deflections, &;, by

the factor /(A - 1)
Acr is taken as the minimum value of #/200 J,,
where:
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h is the height of any column, as A.3.2.

O s the sway deflection of the frame with member inertias I calculated
as in A.3.2, loaded only with notional horizontal forces, as defined in
Section 1.6 and applied as in Section 3.3. J,; can be calculated from
the simplified ‘elastic’ frame method in Appendix D using the values
of Ief‘f.

A.3.4 Calculation of deflections

The first-order deflections are calculated using the gross [ values.

Where elastic-plastic analysis is used, the deflections at the load factor of the
first hinge, A;, is given directly by the software. The structural model for the
elastic analysis must use the same member and base stiffnesses appropriate to
ULS analysis, not to SLS analysis. Base stiffness values are given in A.2.4.

The loads applied to the elastic frame are 4, x (ULS loads), which is a set of
loads in the same proportions as the ULS loads. It is recommended that
software be used for the deflection calculations of the ‘elastic frame’ because
hand calculations for portals is a long process.

The second-order deflections, (8X,, 6Y,), are calculated from the first-order
deflections, (dX;, 6Y}), as follows:
Xy = (X~ 0Xis) { A/ (A -1)} + 0Xis { At/ (Aer1 —1)}
oYy = 6Y) {Acwa/(Aera -1)}
where:
A.rand A, are calculated as in A.3.3

0X, are the sway deflections from the horizontal component of externally
applied loads resisted by the ‘elastic’ frame, A; Hys,

where:
Ay is the load factor at the formation of the first plastic hinge

Hys is the nett horizontal component of the ULS loads. This includes the
notional horizontal forces where they are applied in a load case.

A.4 Deflections of the ‘plastic’ frame
A.4.1 General

To simplify the calculations, this method assumes that all the spans develop
plastic hinges at one end at the load factor A, at which the first hinge forms in
the frame. Then the analysis model becomes an elastic frame with a hinge at
(or near) the end of each span as shown in Figure A.3. The pins are used at
the plastic hinges because at a pure plastic hinge there is no increase of bending
moment.
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This mode of deflection is a sway mode, even for gravity loads, so all the
second-order deflections are calculated from the magnification arising from the
sway mode of buckling. Therefore, the equation in Section 2.4.3 reduces to:

5\/ = 5] {icr/(/lcr_l)}

A.4.2 Reduction factor to allow for P.d (P-little delta) effects

The second-order effects within the member lengths reduce the effective
stiffness of the members. This effect must be included in the analysis. This is
done by calculating effective inertia values for the members, I, as for the
‘elastic’ frame’ in A.3.2 above.

A.4.3 Second-order magnification factor, Acm/(Aco —1)

The second-order deflections are greater than the first-order deflections, &; by
the factor Agp/(Aep-1).

A is taken as the minimum value of #/200 &,, for the ‘plastic’ frame

crp

where:
h is the height of any column, as A.3.2.

O  1s as defined for &, A.3.3 but for the ‘plastic’ frame. This can be
calculated from the simplified ‘plastic’ frame method in Appendix D.

A.4.4 Calculation of deflections

The loads applied to the ‘plastic frame’ must be the difference between the
collapse loads, A, x (ULS loads), and the loads resisted by the ‘elastic frame’.
Therefore the loads to be applied to the ‘plastic frame’ are (4p — 4;) x (ULS
loads).

Typical deflections due to gravity loads alone are shown in Figure A.5. Note
that the frame sways under gravity loading plus notional horizontal forces. This
is partly due to the direct effect of the notional horizontal forces and partly
because the notional horizontal forces causes the hinge to appear on one side
only, creating an asymmetric frame that results in sway.

Figure A.5 Typical deflection of a ‘plastic frame’

In the absence of a more detailed analysis, the hinges in the ‘plastic frame’
model should be assumed to be asymmetric, as in Figure A.6, to avoid
unconservative deflections at collapse load.
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’

Figure A.6 Typical design hinge pattern for a ‘plastic frame

A.4.5 The ‘plastic frame’ resisting vertical loads

The deflections from A, to A, are calculated by simple beam theory based on
simply supported beams because the plastic hinges mean that there can be no
increase in end moments of the rafters. To simplify the calculations, this ‘hand’
method assumes that all rafters will behave as simply supported beams from

load factor A;.

The horizontal deflections &pl due to gravity load result from the end rotation
of the rafters. For simplicity, this method takes the maximum sway deflection
arising from any span. If a frame analysis is performed with a pin at the hinge
positions, a less conservative result may be obtained.

The load on the span at ULS is wys and the load applied to the span on the
elastic frame is wg. Therefore, the load to be applied to the ‘plastic frame’

Wp = )\,p Wurs - WE.

The column top displacement for the external column/rafter that remains elastic
is governed by the rafter end. The rafter end rotation is approximately the
same as for a simply supported beam of the same developed length, S, as shown
in Figure A.7.
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Figure A.7 Column top displacement

For simplicity, the calculations are based on the deflections of a symmetrical
pitched roof, but the method may be used for other geometries.
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The second-order rafter end slope is given by:

S is the developed length of the rafter
wp  is the load on the span of the ‘plastic frame’
wyrs is the Ultimate Limit State load on the span
wg s the load applied to the ‘elastic frame’
A,  is the plastic collapse factor
Iz is the gross value of the major axis inertia of the rafter.
E is Young’s modulus
Aep /(Aep—1) is the deflection magnification factor from A.4.3.
Note that w,, wys and w; here denote the component of load acting transverse

to the rafter measured as a distributed load along the developed length of the
rafter.

For vertical loads measured on plan, wy .., the component transverse to the
rafter is given by:
W = W Cos’a

For vertical loads measured along the slope, wygqpe , the component transverse
to the rafter is given by:

W = Wygpe COsa

where:
w is the set of loads w,, wys or w,
a is the slope of the rafter.

The second-order change of the column top deflections = 7 &

The spread of each span is calculated from the deflection of a simply supported
beam as shown in Figure A.8. The second-order midspan deflection of a
straight simply supported beam of length S carrying a distributed load w, is
given by:

4
_5w,S Aerp
384El, | A, -1

crp

é‘BZ

The spread of the rafter ends results from the deflection at the crank in the
rafter. The spread is given by:

Spread = &g, (Sing +Sina)
where;

oy is the slope of one rafter in the span
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a, is the slope of the other rafter in the span.

Note that there is no spread if the rafter is straight from column to column.

dgsina o
sma1

W%“j

Figure A.8 Rafter spread

A.4.6 The ‘plastic frame’ resisting horizontal loads

The sway deflections due to the notional horizontal forces or externally applied
horizontal loads are calculated assuming the reduced stiffness of the frame
following the formation of plastic hinges as shown in Figure A.9. The
formulae are derived in Appendix D.

Figure A.9 Sway deflection model

The second-order sway stiffness of each bay is given by:

K:L: 1 xl

5, [Sh2 L ] e
3EI, 3EI,) |1 -1

crp

K, s the sway stiffness of the span including second-order effects

O  is the sway deflection of the top of the column which does not have a
hinge in it or in the adjacent length of rafter including second-order
effects
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S is taken as L,, the developed length of the rafter from support to
support where the support may be either a column or valley beam

h is the height of the column from the base to the neutral axis of the
rafter

Iz and I. are the gross values of the major axis inertias of the rafter and the
column

Aep/ (Aep—1) is the second-order magnification factor from A.4.3.

The second-order least sway deflection of the top of the column in a frame may
be taken as:

(2, -4, )zH
=K

4, =

S
where:

£ H is the sum of the equivalent horizontal loads H resisted by the frame.
At each column, H is given by H = Z(Hh)/h, as shown in Figure A.9

Z K is the sum of the sway stiffnesses allowing for second-order effects of
all the spans in the frame.

In addition to this sway deflection, there is an additional spread arising from the
angle in the rafter at the apex of the span. The second-order sagging deflection
of a straight rafter would be:

R
sm2

16 El lcrp -1
where:

M is the moment caused by the horizontal loads resisted by the span and
isgivenby M = K Ah

L, is the developed length of the rafter from column top to column top as
shown in Figure 2.5

A/ (Aep—1) is the second-order magnification factor from A.4.3.

Ha

a 7F\—>\
7 H 7H1

h3 h

h

ho[ _Hi h 2 h,
hy
Yy . \ Y
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Figure A.10 Horizontal forces and moments from horizontal forces
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Therefore the additional spread in each span is given by:
Spread = &2 (Sin o +Sina)
Where:

ay  is the slope of one rafter in the span

a  is the slope of the other rafter in the span.

A.5 Axial forces

Some of the axial compression forces differ from the first-order analysis values
because the shape of the frame differs from the undeformed shape. The axial
forces in the deformed structure must be used in the energy summations.

There can be no change in the total axial forces in the columns. However the
drop of the apex will change the axial compression in the rafters. Therefore, in
the absence of a detailed analysis the axial loads at collapse should be taken as:

Columns P, = P,

Rafters P, = —— +P,

where:

P, is the set of axial forces in the members at ULS, including the
second-order effects

P, is the set of axial forces at ULS in the first-order analysis

Py, is the axial compression force in the rafter at ULS at the hinge nearest
mid-span calculated by first-order analysis. The value at mid-span
may be used

Py, is the additional axial compression force in the rafter such that
Py = P, + Py

A.6 Reserve factor at Ultimate Limit State

The energy released by second-order effects is calculated from the expression
YPy¢sd¢, which is defined in A.2.2. This summation is shown in the worked
examples.

The energy absorbed by the plastic mechanism is calculated from the expression
IM,dO which is defined in A.2.2. This summation is shown in the worked
examples.

The reserve factor on moment, Ay, is calculated from the first-order plastic
collapse factor, A,, as follows:

- LP,¢sdg

Ay = 2
M, do

p

The load factor of the frame at failure is taken as Ay.
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APPENDIX B Second order analysis of
tied portals ‘by hand’

B.1 Range of application and design steps

This Appendix shows how second-order analysis may be performed without
second-order software for tied portal frames, designed by plastic design
methods. These portals have ties at or near the rafter level. The method is
only intended for frames in which:

(i) the tie connects either to the column/rafter haunch or directly to the rafter
(i) no hinges occur below ULS when analysed by first-order analysis
(iii) the tie does not yield below ULS.

It should be recognised that tied portals with low rafter slopes are potentially
susceptible to snap-through of the rafters. The worked example shows a
significant increase in axial force and consequent apex drop for a frame with an
8° slope. It is recommended that slopes less than 6° should not be used without
additional consideration of the stiffnesses of members and components.

Portals in which there is a tie at an internal floor level, but where there is no tie
at or near the rafter level, should be designed using the method for common
portals, given in Appendix A.

It is recommended that the ties in tied portals are designed so that they do not
yield below Ultimate Limit State, because yielding of the tie may cause a major
change in both the geometry of the structure and the structural behaviour. It is
also recommended that this method is not used for frames for which the
deflections from a sway-check exceed #/500, as explained in Section 5.4.3.

Design steps
The design steps are as follows:

1. Identify from the first order analysis:
» the plastic collapse mechanism
o the hinge incremental rotations
e the axial forces in the members

o the load factor at the formation of the first plastic hinge, A; (excluding
hinges at bases where the moment of resistance of the base is less than
the moment of resistance of the columns)

e the plastic collapse factor, A,

e the deflections of the frame at A,.
2. Calculate the second-order deflections of the ‘elastic’ frame.

(a) Calculate the stiffness reduction factors to allow for P.J (P-little delta)
effects
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(b) Calculate the second-order magnification factors for the ‘elastic’
frame.

(c) Calculate the deflections of the ‘elastic’ frame. These are the values of
the deflections at A, plus additional deflections calculated to allow for
the second-order effects.

3. Calculate the second-order deflections of the ‘plastic’ frame.

(a) Calculate the stiffness reduction factors to allow for P.J (P-little delta)
effects

(b) Calculate the second-order magnification factor of the ‘plastic’ frame.
(c) Calculate the deflections of the ‘plastic’ frame from gravity loads.

(d) Calculate the deflections of the ‘plastic’ frame from horizontal loads.

4. Calculate the apex drop using an iterative method.

5. Calculate the increased axial loads in the rafters to account for second-
order effects.

6. Sum the energies.
7. Calculate the reserve factor, Au.

8. Check Ay =>1.0

B.2 Basis of method
B.2.1 General

The basis of the method is the same as described in A.2.1 for common portals,
which are portals without tie at or near the rafter level.

B.2.2 Application of the energy method

The energy calculations are as described in A.2.2 for common portals.

B.2.3 Deflection calculations

The deflection calculations are not identical to the calculations for common
portals in A.2.3. This is because, where the tie in a tied portal is at or near the
rafter level, the rafters and tie act more like a truss than like the rafters in a
common portal. Therefore, the vertical deflection of the apex and the spread of
the column tops is dominated by the axial deformations of the rafters and the tie
instead of the bending deformations of the rafters and the columns.

The deflections governed by bending stiffness are calculated using the same
principles as in A.2.3 for common portals.

The following deflections are governed by bending stiffness:
e sway of the frame, for both ‘elastic’ and ‘plastic’ frames

e mid-rafter deflection from sway and transverse loads on the rafter.

The deflection of the apex is calculated from the following components:

e The elastic deflection calculated at ULS from the first-order frame analysis.
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e A drop from curvature shortening of the rafters.

e  Further deflection arising from the increase in axial force in the rafters to
maintain the same vertical component of force as in first-order analysis
because the rafter slope has decreased due to the drop of the apex.

B.2.4 Base stiffness

The base stiffness may be taken as in A.2.4.

B.3 Bending deflections of the ‘elastic’ frame

B.3.1 General

The methods are the same as described in A.3 except for the differences noted
below. Only the differences from A.3 are given below, to clarify the
comparison of the methods for common and tied portals.

B.3.2 Reduction factor to allow for P.6 {P-little delta) effects

For rafters of tied portals with ties that have not yielded at ULS, the method is
similar to the method in A.3.2 but the calculation of P, differs from A.3.2.
The length L is taken as the length along the slope from apex to eaves/valley.
The axial forces in the rafter should be taken as the forces occurring in the
length resisting the tie force because these are the highest forces occurring
within the length of the rafter.

For columns of tied portals, the method is identical to that in A.3.2.

B.3.3 Second-order magnification factors, Ace/{Acr—1)

The methods are the same as in A.3.3, except that in the calculation of J,, the
rafter span is taken as the length from apex to eaves/column.

B.3.4 Calculation of deflections

The principles are as in A.3.4. However, the second-order vertical deflections
are governed by truss action, which is calculated according to B.5. Therefore,
only the sway deflections are magnified by A./(A,-1).

The second-order deflections on the elastic frame, excluding the deflections
within the truss system, are calculated as follows:

X, = (X, — 0Xy5) + X5 {Act/ (e = 1)}

oY, are calculated for the truss system as in B.S.

B.4 Bending deflections of the ‘plastic’ frame

B.4.1 General

To simplify the calculations, this method assumes that all the spans develop
plastic hinges at one end at the load factor 4, at which the first hinge forms in
the frame. Then the analysis model becomes an elastic frame with a hinge at
(or near) the end of each rafter as shown in Figure B.1. The pins are used at
the plastic hinges because at a pure plastic hinge there is no increase of bending
moment.
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This mode of deflection is a sway mode even for gravity loads, so all the
second-order deflections are calculated from the magnification arising from the
sway mode of buckling. Therefore, the second-order deflections are given by:

6 = 61 {/Zcr/(/zcr_l)}

B.4.2 Reduction factor to allow for P.J (P-little delta) effects

The second-order effects within the member lengths reduce the effective
stiffness of the members. This effect must be included in the analysis. This is
done by calculating an effective inertia value for the members, g, as for the
‘elastic’ frame in Section B.3.2 above.

B.4.3 Second-order magnification factor, Acp/{Acp —1)

The principles that apply are as in A.4.3, except that in the calculation of &,
the rafter span is taken as the length from apex to eaves/column.

B.4.4 Calculation of deflections

The loads applied to the ‘plastic frame’ must be the difference between the
collapse loads, A4, x (ULS loads), and the loads resisted by the ‘elastic frame’.
Therefore the loads to be applied to the ‘plastic frame’ are (4, — 4 x
(ULS loads). Typical deflections are shown in Figure B.1, which shows that
the frame sways under gravity loading plus notional horizontal forces. This
sway is partly due to the direct effect of the notional horizontal forces and
partly because the notional horizontal forces cause the hinge to appear on one
side only, creating an asymmetric frame and an asymmetric response.

Figure B.1 Typical deflection of a ‘plastic frame’

In the absence of a more detailed analysis, the hinges in the ‘plastic frame’
model should be assumed to be asymmetric, as in Figure B.2, to avoid
unconservative deflections at collapse load.

Figure B.2 Typical design hinge pattern for a ‘plastic frame’

B.4.5 The ‘plastic frame’ resisting vertical loads

The deflections from A, to A, are calculated by simple beam theory based on
simply supported beams because the plastic hinges mean that there can be no
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increase in end moments of the rafters. To simplify the calculations, this ‘hand’
method assumes that all rafters will behave as simply supported beams from

load factor A,.

The horizontal deflections due to gravity load results from the end rotation of
the rafters of one of the spans. Where the analysis model is a series of
individual spans instead of the entire frame, the greatest end rotation should be

used.

The load on the span at ULS is wy.s and the load applied to the span on the
elastic frame is wg. Therefore, the load to be applied to the ‘plastic frame’
wp = A, wys - We.

The column top displacement for the external column/rafter that remains elastic
is governed by the rafter end. The rafter end rotation is approximately the
same as for a simply supported beam of the same developed length, S, as shown

in Figure B.3.

Figure B.3 Column top displacement

The second-order rafter end slope is given by:

3
o - w,S Acp
R2 =
24Elg | Ay —1
giving a sway deflection of the column top = h6k.

The transverse deflection of the rafter at mid-rafter (where there is a plastic
hinge) is given by:

4
5w,S Acp
Ory =
384Elx | Ay —1
where:
S is the rafter length from apex to eaves/valley

wp  is the load on the span of the ‘plastic frame’

wyrs i the Ultimate Limit State load on the span
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weg is the load applied to the ‘elastic frame’
Ap, is the plastic collapse factor
Ir is the gross value of the major axis inertia of the rafter
E is Young’s modulus
Aep/(Aer-1) is the deflection magnification factor from B.4.3.
Note that w,, wy.s and w; here denote the component of load acting transverse

to the rafter measured as a distributed load along the developed length of the
rafter.

For vertical loads measured on plan, wypi., , the component transverse to the
rafter is given by:
W = W, Cos’a
For vertical loads measured along the slope, w,qq. , the component transverse
to the rafter is given by:
W = Wygope COS
where:
w is the set of loads w,, wy.s or w,

a is the slope of the rafter.

B.4.6 The ‘plastic frame’ resisting horizontal loads

The sway deflections due to the notional horizontal forces or externally applied
horizontal loads are calculated assuming the reduced stiffness of the frame
following the formation of plastic hinges as shown in Figure B.4. The formulae
are derived in Appendix C.

Figure B.4 Sway deflection model

The second-order sway stiffness of each bay is given by:

K, = L = 1 X L
552 Sh2 + h3 ﬂ’crp
3EIR 3EI, ,lcrp -1
where:

K. is the sway stiffness of the span including second-order effects

6,  is the sway deflection of the top of the column which does not have a
hinge in it or in the adjacent length of rafter, including second-order
effects
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S is taken as the length of the rafter from apex to eaves/valley

h is the height of the column from the base to the neutral axis of the
rafter

Iz and I, are the nominal values of the inertias of the rafter and the column

Aerp/ (Aerp-1) 1s the second-order magnification factor from B.4.3.

The second-order least sway deflection of the top of the column in a frame may
be taken as:

(2, -4, J=H
K

s

4, =

where:

2H is the sum of the equivalent horizontal loads H resisted by the frame.
At each column, H is given by H = Z(HM)/h, as shown in Figure
B.5.

2K, is the sum of the sway stiffnesses, allowing for second-order effects of
all the spans in the frame.

The sagging deflection of the rafter at mid-length between the apex and the
eaves/valley, caused by horizontal loads, is given by

MS2 ﬂ‘crl
16EIR (ﬂ‘crl~1)

5sm2 -

where:
S is the length along the rafter slope from apex to eaves/valley
I is the gross I, value of the rafter

M is the moment caused by the horizontal loads resisted by the span and

is givenby M = K4 h.
H3
N H
i S
_r\r>\
y Hy

Figure B.5 Horizontal forces and moments from horizontal forces
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B.5 Deflections of the rafters/tie ‘truss’ system
B.5.1 General

The apex deflection is calculated from
(i) First-order elastic deflections of the frame at ULS.
(ii) Apex drop from rafter curvature.

(iii) Increased rafter forces so that the vertical component of the rafter force at
the apex remains equal to the first-order values despite the reduced slope of
the rafters due to apex drop.

Step (iii) may require iteration until the solution is acceptably close to
equilibrium. This is measured in terms of increase of the drop of the apex.
The solution may be taken as acceptable when the increase in apex drop, from
one iteration, is less than 3% of the total apex drop calculated before the
iteration.

B.5.2 Apex drop from first-order elastic deflections

The apex drop at ULS from first-order behaviour may be calculated from

ous = G/A
where:
A is the load factor at the formation of the first hinge

S is the apex drop at A, calculated from the first-order behaviour.

B.5.3 Apex drop from curvature shortening &

It is unusual to consider the shortening of the end to end length of members
caused by curvature. However, where tied portals have low roof slopes, for
example around 8° or lower, the apex drop is very sensitive to member
shortening. Tied portals tend to have slender rafters, so curvature shortening
should be considered. The shortening is calculated from the deflection of the
length of the rafter between the ‘sharp’ end of the column/rafter haunch and the
apex of the roof, S;, shown in Figure B.6.

Figure B.6 Length of rafter in curvature shortening calculations
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The deflection within S, is calculated assuming that the bending moment
diagram is as shown in Figure B.7. The hogging moments at the ends of the
length S, are equal to the sagging moment at mid-length due to plastic
redistribution of moment, so that

N
MR - ULS™r

16
where:

wurs is the transverse load along the rafter at ULS.

Figure B.7 Bending moment diagram for curvature shortening

calculations
2
. 2 WysS,
The second-order transverse deflection, 6, = ————
384 EI
where:
Lgr is calculated according to B.3.2.
2
. . . _ T (6052 )2
The shortening is then approximated as 4 = —————
45,

The apex drop from shortening is calculated as shown in Figure B.8 from:

A

Sina

Apex drop =

Figure B.8 Apex drop from rafter shortening
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B.5.4 Apex drop from increased rafter axial force

The apex drop reduces the slope of the rafters, so the force must increase to
provide the same vertical component of rafter force. The increase in axial force
causes additional apex drop, which is calculated by an iterative process as
follows:

(i) Calculate the vertical component of the rafter axial force at the apex
according to first-order analysis.

V] = PR] Sin (23]
(i) Calculate the reduced slope of the rafter from first order deflections from

Section B.5.2 and from curvature shortening from Section B.5.3. The
deflection is:

A4

Sina,

d] =8]+

The unstressed rise of the rafter above the hinge at the bottom of the rafter,
h, = S Sinea, as shown in Figure B.9.

Reduced rise, h, = h; - d|

Reduced slope, &, = Sin’ [hl,;dlj
r

(iii) Calculate the reduced vertical component of the rafter
V2 = PRl Sinaz.
(iv) Calculate the required increase in rafter axial force:

V2 _Vl

Sina,

§PR -
(v) Calculate the resultant increase in horizontal reaction at the column top:
OoH, = 0oPy Cosa,.

(vi) Calculate the resulting increase in tie force:

C+hT
8T = OH,
hr

where, ¢ and hy are defined in Figure B.9 and c is defined in Figure B.10

(vii) Calculate the horizontal movement of the hinge Z due to tie stretching:

oT x halfspan

Lateral displacement of tie end, 60X, = o xashan
AL E

where Ay is the cross-sectional area of the tie

) e+ hy
Lateral displacement of Z, 0X;1 = oX;
hr
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Figure B.9 Tjed portal geometry

Figure B.10 Effective cantilever above tie

(viii) Calculate the horizontal movement of hinge Z due to column bending:
SH.c* (hy + c)
3EI eff.c

0X;c =

where Lg. is calculated according to B.3.2.
(ix) Calculate the rafter shortening from increased axial strain
OPy S,
A E

r =

where Ag is the cross-sectional area of the rafter.

(x) Calculate the increased rafter drop from increased rafter axial as Figure
B.11.

oX, oS,
dA = +
Tana, Sina,

where éXZ = éXZT + éXZC
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Figure B.11 Apex drop from increased rafter axial force

(xi) Re-calculate the rafter slope. The definition is now given by:

A4

Sina,

dz = 51+ +dA

S

. -1 h1 - dz
Revised slope @ = Sin _
(xii) Calculate d>/d,
If d»/d, < 1.03, take ¢ = a» and Pr = Py, + OPk.
If d>/d; > 1.03, repeat steps (iii) to (xi).

If (revised dy)/(previous dy) < 1.03, take @ = o and Pr = Pg; + OPg;
otherwise, repeat again.

B.6 Axial forces

The energy calculation uses the axial forces at ULS including the second-order
effects.

The axial forces in the columns may be taken as the values from first-order
analysis because the total of the axial forces must remain the same to preserve
vertical equilibrium whatever analysis is used.

The axial forces in the rafters are greater than calculated by first-order analysis.
The axial force increases as the slope decreases so that the vertical component
of the force remains the same as from the first-order analysis.

Therefore, the forces used in the energy calculation may be calculated as
follows:

Columns P, = P
Rafter P, = P +6P;
Where:

P,  is the axial force used in the energy calculation
P, is the axial force at ULS in the first-order analysis

oy is the slope of the rafter in the unstressed condition
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o, s the slope of the rafter allowing for second-order effects.

B.7 Reserve factor at Ultimate Limit State

The reserve factor on moments, Ay, is calculated from the first order collapse
factor, A4, as follows:

) 2P2¢sd¢}

Ay = 4,1
" ”[ M, do

The summations are shown in the worked examples.

The l@ad factor of the frame at failure is taken as Au.
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APPENDIX C Effective stiffness of
members

The horizontal thrust on a span of a common portal (i.e. not a tied portal) is
limited if a plastic hinge develops at one end of the span, either at the column
top or in the rafter. For a column with a pinned base, the horizontal thrust, H,
is limited to:

H:M‘”
h

M, is the plastic moment of the hinge

h is the height of the hinge above the base.

A simple closed solution for the effective stiffness of a uniform rafter is possible
if the geometry of the rafters is idealised as a half sine-curve and the loading is
idealised as a varying distributed load of a half sine-curve intensity as shown in
Figure C.1. The deflections from a sinusoidal load on a uniform member are
sinusoidal, allowing a simple solution.

For in increment of loading above the load that forms the first hinge, the
deflection of the roof is entirely determined by the bending deflection. This is
because the horizontal thrust cannot increase above the limiting value

determined by the plastic hinge. For a load increment wSin =X , the deflected
L

form calculated by first-order analysis is given by:

2

7= asin ™ =H(Z:y]dx =H[—%]dx _ H[—é]”(loading)dx

:H-(Ljnwsinii
EI

L
wL’ . TX
=— Sin —
n EI L
. X n4 . X
", wSm——:EIa—481n———
L L L

Considering the effects of deflection, the vertical reaction from the horizontal
thrust decreases if the roof member deflects downwards, reducing the rise of the
arch-shaped member. This loss of vertical reaction must be compensated for by
increased reaction from bending to maintain vertical equilibrium.
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X
Taking the undeflected shape of the roof member as ASin— and the actual

L
. . X . . .
deflection as b Sin—, then the loss of vertical reaction from H is:
L
2 2
wy = H d’y, _H d’y,
dx’® dr’®
n’ i n’ i
= HA=—-Sin—=-H(A-b)=—Sin—
L’ L L L

]

2
an—ZSinE
L L

The vertical reaction from bending is:

d*M d° d’
2 2 — El zy
dx dx dx

.. for a uniform member

Wy =

4 4
we = —EIZ (bSinEJ:~EIbn—SinEx—
de? L L L

For vertical equilibrium

w +wy+wyg=0

w = - Wg - Wy
X nt X n’ X
wSin— = EIb—Sin——Hb—2$in———
L L L L L

4
But wSin o Ela n_4 Sin ~
L L L

4 2 4
EIb%SinE—Hb“—ZSinﬂ = EIa%SinE

L L L L L L
T 2 T 2
bEI—Z—bH:aEI—E—
L L
T 2
Writing  El — =P,
L
Then chr -bH = aPcr

b(P, -H) = aP,
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The axial thrust P in the rafter is always greater than the horizontal thrust H, so
conservatively

Thus the deflection including second-order effects is greater than the deflection
from first order calculations by the factor 1/(1 - P/P.). Therefore, the
second-order effects may be included by using an effective rafter stiffness

Igr = Iz x (1 - P/P,).

| w sin|nx/L

y = Asinntx/L

| |
|

Figure C.1 /dealised rafter after formation of the first hinge in the
span
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APPENDIX D Deflections from horizontal
loads for ‘hand’
second-order calculations

D.1 General

This Appendix describes ‘hand’ methods of calculating the sway deflections
arising from horizontal loads for frames. These methods are intended for use in
Appendix A and Appendix B.

Methods are given for ‘elastic’ frames in D.2 and for ‘plastic’ frames in D.3.

An alternative and more accurate method of calculating the deflections would be
to use software to analyse the frame. For ‘plastic’ frames, this can be done by
inserting pins at the positions of all the plastic hinges assumed in the method
described in this Appendix.

D.2 ‘Elastic’ frame sway deflection

D.2.1 General

This Section describes methods of calculating notional sway deflections for the
frame when it is entirely elastic.

D.2.2 Simplifying assumptions

The majority of multi-span portal frames have slender internal columns. When
a horizontal load is applied to these frames, there is only a small bending
moment induced in these slender internal columns, because the external columns
are much stiffer. A typical bending moment diagram is shown in Figure D.1.

H

Figure D.1 Bending moments in a typical two-span frame under
horizontal loading

This can be considered as two sub-frames, each comprising an external column
and a rafter pair, as shown in Figure D.2. For multi-span frames in general,
the two external sub-frames provide the majority of the stiffness, so the same
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model of a pair of sub-frames could be used for hand calculations. Where the
stiffness of the internal columns is to be included, it is preferable to use
software for the analysis of the entire frame.

H

Figure D.2 Sub-frames for a typical two-span frame

Where the internal columns provide significant stiffness, it is uneconomic to
ignore them and a detailed analysis of the entire frame by software would be
preferable to the simple methods given here.

Single-span portals and tied portals are better modelled with the rafter length
taken as eaves to mid-span, as shown in Figure D.3.

Figure D.3 Sub-frames for a typical single-span frame.

Given the above assumptions, the calculation of the sway deflections caused by
horizontal loads becomes a reasonable task.

D.2.3 Method for first-order sway deflections

The frame is considered to be a pair of sub-frames as shown in Figure D.2 for
multi-span frames or Figure D.3 for single-span frames. A typical sub-frame is
shown in Figure D .4.

Figure D.4 /dealised span

When a horizontal force H is applied to the structure in Figure D.4, the
resulting bending moment diagram is a shown in Figure D.5. The bending
moment diagram has been drawn on the compression side for clarity.
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BMD drawn on compression
side for clarity

Figure D.5 Bending moment diagram
The resulting deflections are shown in Figure D.6.
The rafter end slope is given by:

MS
3EI,

g =

Therefore the column top deflection due to A 1is given by:

5. =ho :h(M_SJ :h[(Hh)SJ _ HSK’

3EI, 3EI, 3EI,

The column top deflection due to column flexure is given by:

_Mn* (Hm)h®  HAW®

3EI, 3EI 3El

C C

o

C

The total column top deflection & is given by:

2 3
5 =0, 48, =—Hl S, h
3EI, 3EI,

—
— —

0

el

T
Figure D.6 Coflumn top deflection
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Therefore the first-order column top stiftness K is given by:

& Sh* n’
—_t
3ElI, 3EI.
In the frame shown above, which has been idealised as two sub-frames, the total
column top stiffness of the whole frame is the sum of the stiffnesses of the two

sub-frames, ZK.

The first-order sway deflection, 6X, is given by:

sx =12

CsK

D.2.4 First-order rafter spread and apex drop

In addition to the column top deflection, the span will spread because of the
sagging deflection in the rafter coupled with the angle at the apex. By simple
hand methods, it is only possible to produce approximate allowance for this
effect in multi-bay frames. This is done by assuming the sub-frames illustrated
in Figure D.4 are independent, calculating the spread of each span and then
calculating the total accumulation of spread across each frame.

The deflection at mid-span of a symmetrical rafter of length S can be calculated
by the moment area method as shown in Figure D.7. This method can be
adapted for any other apex position. The deflection at the mid-span & is given
by:

_8ML®  smL*  3mML® ML’
48 El 48 EI 48 El 16 EI

o

8ML?
48El

Figure D.7 Deflection of a straight rafter

The spread of the pitched-roof rafter is calculated from the deflection of a
straight rafter as shown in Figure D.8. The spread is given by:

Spread = 6 (Sin @) + Sina,)
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Figure D.8 Spread of pitched-roof rafter

D.2.5 Method for second-order notional sway deflection

The second-order notional sway deflections, &,,, is used to calculate the critical
buckling ratio for the sway mode, A, for the frame when it is entirely elastic.

The method is similar to the method for calculating first-order sway deflections
in D.2.3. The difference is that PJ effects are included by using the effective
inertias, g , of the members as calculated in A.3.2. These are used in the
method in D.2.3 in place of the gross inertias, I. In addition, the effect of base
stiffness may be added as explained in D.4.

The applied horizontal load, H, is the notional horizontal forces which must be
taken as the full 0.5% of the Ultimate Limit State (ULS) loads, see Section 1.6,
because the formula for calculating the critical buckling ratio,

A = h/2008

assumes that 0.5% of the ULS loads has been applied to calculate J.

The total column top deflection J is given by:

2 3
6 =0x +0, =H£ Sh + L ]
3EIeff.R 3 Eleff.c

Therefore the second-order column top stiffness K is given by:

K, -H . 1

s Sh? n’
+
3E‘Ieff.R 3E‘Ieff.c

In the frame shown above, which has been idealised as two sub-frames, the total
column top stiffness of the whole frame is the sum of the stiffnesses of the two

sub-frames, XK, .
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The second-order notional sway deflection, &, , is given by:

H

Sy =————
5K, +3K,

where K, is calculated in D.4.

The critical buckling ratio for the first mode of frame buckling (which is the
sway mode) for the ‘elastic’ frame is given by:

/Zcrl = h/200 6,12

D.3 ‘Plastic’ frame sway deflection
D.3.1 General

This Section describes methods of calculating notional sway deflections for the
frame when the stiffness of the frame has been reduced by the formation of
plastic hinges.

D.3.2 Simplifying assumptions

The load factor A, is defined as the load factor at which the first plastic hinge
forms. To simplify hand calculations, it is assumed that a plastic hinge occurs
at one end of every span at 4,. This is a conservative assumption. It is also
assumed that all the spans become mechanisms as the same load factor,
which is A,

Given the above assumptions, the calculation of the sway deflections caused by
horizontal loads becomes a reasonable task.

D.3.3 Method

A typical two span frame is shown in Figure D.9 with the Ultimate Limit State
(ULS) loads. The load factor at the formation of the first hinge is defined as 4,
and it is assumed that a plastic hinge forms in all spans so that the structure can
be idealised as shown in Figure D.10. This ideal structure behaves as a series
of beam plus rafter pairs as shown in Figure D.11, which is the same concept
as in D.2.3.

H—p

Figure D.9 Typical multi-span frame
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Figure D.10 Multi-span frame with first hinge in each span

Figure D.11 /dealised span

The horizontal load applied to the ‘plastic’ frame is the difference between the
load applied to the fully elastic model of the frame and the load applied at
plastic collapse, i.e. at load factor A,. The elastic deflections will include the
effects of 4; x (ULS loads). Therefore, the deflections of the ‘plastic’ frame
should be calculated for applied horizontal forces equal to (4, - A4;)x(ULS
loads).

The horizontal force is applied to sub-frames comprising a column and a rafter
pair as shown in Figure D.11, which is similar in concept to the sub-structures
used for the analysis of the ‘elastic’ frames in D.2.

The difference between the ‘plastic’ frame and the ‘elastic’ frame is that only
one of the sub-frames in the plastic frame includes an external column. The
other external column is separated by a plastic hinge.

The deflections are calculated using the methods for the ‘elastic’ frame but with
the different sub-frames resulting from the plastic hinges.

Therefore the column top stiffness K is given by:
H 1
g Sh: K’
+
3ElI, 3EI,
Where the frame is multi-span, the total column top stiffness is the sum of the
stiffnesses of all the sub-frames, K.

The first-order sway deflection, dX;;, is given by:

5X H

Is —ZK

Tied portals are best modelled by taking S equal to the length of the rafter from
the apex to the eaves/valley. This is because the trusss behaviour of the
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rafter-tie system provides some positional restraint to the apex in the sway mode
of the frame.

D.3.4 First-order rafter spread and apex drop

In addition to the column top deflection, the span will spread because of the
sagging deflection in the rafter coupled with the angle at the apex in the same
way as in D.2.4.

D.3.5 Method for second-order notional sway deflection

The method of calculating the second-order notional sway deflections, &,,, used
to calculate the critical buckling ratio for the sway mode, A.,, , for the frame
when the stiffness of the frame has been reduced by the formation of plastic
hinges is similar to the method in D.2.5.

The method accounts for PJ effects by using the effective inertias, L , of the
members as calculated in A.2.3. These are used in the method described in
D.2.3 in place of the gross inertias, /. The effect of base stiffness may be
added as explained in D.4.

The applied horizontal load, H, is the notional horizontal force, which must be
taken as the full 0.5% of the Ultimate Limit State (ULS) loads, see Section 1.6,
for the reasons given in D.2.5.

The total column top deflection Jis given by:

2 3
0 =064 +6, =H( Sh + h J
3 EI eff.R 3 Eleff.c

Therefore the second-order column top stiffness K, is given by:

K, -H _ !

g Sh’ n’
+
3 El eff.R 3 Eleff.c

In the frame shown above, which has been idealised as more than one
sub-frame, the total column top stiffness of the whole frame is the sum of the
stiffnesses of the two sub-frames, XK, .

The second-order notional sway deflection, &,, , is given by:

H

o = —
K, + XK,

np

where, Kb i1s as calculated in D.4.

The critical buckling ratio for the first mode of frame buckling (which is the
sway mode) for the ‘plastic’ frame is given by:

A = h/2006,,

Tied portals are best modelled by taking S equal to the length of the rafter from
the apex to the eaves/valley for the reason given in D.3.3
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D.4 Nominally pinned bases

BS 5950-1, Clause 5.1.3.3 says that the stiffness of the nominally pinned base
may be assumed to have a rotational stiffness equal to 10% of the column
stiffness, which may be used when checking frame stability, even where the
strength calculations assume no moment is applied to the foundation. This
stiffness is very useful in portal design, particularly for more flexible frames
such as multi-bay portals and tied portals. This stiffness is used for calculating
&, which is used to find A, for the frame stability. The base stiffness of all the
columns with base fixity may be added to the sway stiffness of the frame.

An individual column loaded by a horizontal force H at the top of the column is
shown in Figure D.12.

Figure D.12 Sway stiffness from base fixity

Base stiffness, K = 0.4E—I
h
Base moment, M = Hh
2
Base rotation, 8 = M = Hh = 5 Hh
K [ 0.4 EI ] 2EI
h
3
Deflection of column top due to ¢ = > Hh
2EI
: Hi’
Deflection of column top due to flexure =
3EI 4
3 3
. Total column top deflection, § = > Hh + Hh
2EI  3FEI 4

Sway stiffness due to base stiffness, K, = " !

4 5h° n’
+
2El 3El 4
This stiffness is additive to the frame stiffness for calculating &, and &, in
D.2.5 and D.3.5.
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APPENDIX E Hinge deflections by
interpolation

E.1 Vertical deflections

This appendix gives an approximate method that may be used in the energy
method of second-order analysis (see Section 5.6 and Appendices A and B) to
calculate the deflections of plastic hinges in rafters that do not occur at the
points for which deflection output is available. For example, software
commonly gives the deflections at the apex of a span. The hand calculation
methods in Appendix A and Appendix D give deflections at mid-span. Where
there are two hinges in any one span, it is safe to assume that the deflections of
one hinge are the deflections of the apex (or mid-span) and that the deflections
of the other hinge are the deflections of the nearest eaves (or valley). This
assumption does not normally affect the economy of the method significantly.
However, where there is only one hinge in the span, the deflections of the hinge
should be taken as the deflections of the apex (or mid-span), unless they are
calculated more accurately. Where the hinge is not far from the eaves (or
valley), more accurate values of deflection may improve the economy
significantly. For these mechanisms, the deflection can be found by
interpolation. This may be done by assuming the deflection at the hinge is
related to the known deflection according to the deflected form of a simply
supported beam.

The deflection, y, of a simply supported beam of span L supporting a uniformly
distributed load, w, is derived from:

o (3 (5)
fif2) -l 2] 2] 2]

Therefore, the ratio of the deflection at point al to the deflection at point AL
(see Figure E.1), is given by:

4 3
Yo a —-2a +a

Yo B-2p8+p

where AL is the mid-span, this reduces to:
Yo
Ve

:3.2(a4 -2a’ +a)

Taking g for the point in the span for which the deflections are known and «
for the point at which the hinge occurs, the deflection at the hinge can be
calculated.
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\/\/

Figure E.1 Distances al and pL for interpolation

E.2 Horizontal deflection

The horizontal deflection may be calculated by linear interpolation between the
deflection at the apex (or mid-span) and the deflection of the nearest columns
(or valley) on the other side of the hinge.
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WORKED EXAMPLES

Single span steep roof portal frame
Tied portal frame
Two-span portal frame

Two-span portal frame with hit/miss internal columns

107
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127

151
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INPUT FROM FIRST-ORDER ANALYSIS
1.1 General Arrangement
The calculations have been carried out using by spreadsheet software. The

numerical values presented below are the values from the spreadsheet rounded
to a suitable number of significant figures.

15000 15000

14660

406 x 178 UB67

404 x 178 UB67 5400

" Pinned 30000 Pinned |
Angle of rafters: a = a = 30°
Span = 30 m
30
Developed length of rafter = = 34.64 m
cos30°

Height of column from base to Neutral Axis of Rafter = 6.0 m
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1.2 Loading

NHF NHF
Frame spacing =6m

Dead = 0.100 x 6.000 X 1.4 = 0.840 along slope
Service = 0.150 X 6.000 x 1.4 = 1.260 on plan
Imposed = 0.600 X 6.000 %X 1.6 = 5.760 on plan

Self Weight = 80 x 107 x 1.000 x 1.4 = 1.120 along slope

ULS loads on plan = 1.26 + 5.76 = 7.02 kN/m

ULS loads on slope= 0.84 + 1.12 = 1.96 kN/m
ULS load transverse to slope = 7.02Cos*30° + 1.96Cos30° = 6.96 kN/m
Taking notional horizontal forces (NHF) as 0.5% of the column base reactions

Total vertical load = 30(7.02 = 1.96/Cos 30) = 279 kN

Required NHF = 0.005 X 279 = 1.39 kN

Clause 2.4.2.4
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1.3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate

the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous

rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is

not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism

N
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Find Node Locations

Pt A- (0, 0) = (0, 0)

PtB - (0, 6) = (0, 6)

Pt C- (15, 6 + 15 tan 30) = (15, 14.660)

Pt D- (30, 6) = (30, 6)

Pt E- (30, 0) = (30, 0)

Pta - (12.698 Cos 30, 6 + 12.698 sin 30) = (10.997, 12.349)
Pt b ~ (30, 5.400) = (30, 5.400)

Find Centre of Rotation I

Y - Y .
Y, = 30 x A_A = 30 x 12349700 _ 55350,

X, - X, 10.997-0.0

X, = 30
Pt1 - (30, 33.689)

Hinge Rotations

Taking the instantaneous rotation at A = &

12.345

. — e _ —_
Rotation at [, § = & 33.689-12 345 0.579 6
. 33.689 - 5.400
Rotation at E, = 6 X 5 400 = 0.579 6 x 5.239 = 3.032 ¢

1.4 Axial forces at ULS from first-order analysis

LH column: at base = 142 kN, at haunch = 136 kN
LH rafter: at column = 126 kN, at apex = 58 kN
RH rafter: at column = 126 kN, at apex = 59 kN

136 kN

LH column: at base = 142 kN, at haunch
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1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1:2000 Annex 1.2. These

may be taken from section tables.

M, = py Su

For the axial forces in this frame under this load case

403 kNm

M, rafter

M, column 452 kNm

1.6 Load factor at formation of the first hinge, A,

From the frame analysis output, the load factor at the formation of the first

hinge is:

A, = 1.232

1.7 Plastic collapse factor, A,

From the frame analysis, the plastic collapse factor calculated by first-order

analysis is:

A, = 1.503

1.8 Member inertias, |,

LH column: 457x%x191%x74 UB :

LH rafter: 457 %191 %67 UB:
RH rafter: as LH rafter
RH column: as LH column

= 33320 cm*

29380 cm*
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1.9 Deflections of frame at A, (formation of the first hinge)

6XB = _79.4 mm 6),3 - 0-5 mimm
Oc = 3.4 mm O,c = 146.1 mm
Op = 86.3 mm Op= 0.5 mm

2. SECOND-ORDER ANALYSIS
2.1 Axial force in members

The axial force in the members is calculated from the first-order analysis
output. The values are taken as the mean of the axial force at the ends of the
member where there is no major step in the axial force. Where there is a
major step in the axial force, e.g. at the underside of a crane bracket on a
column, the value should be taken as the mean of the ends of the most highly
loaded segment.

LH col: take mid-height Py ¢ = (142 + 136)/2 = 139 kN
LH rafter:  take mid-length Py, = (126 + 58)/2 = 92 kN
RH rafter: take mid-length P, = (126 + 59)/2 = 93 kN
RH col: take mid-height Py ¢ = (142 + 136)/2 = 139 kN
2.2 Bending deflections of the “elastic” frame

2.2.1 Stiffness reduction factors allowing for P.5 effects

LH column:

I, = 33320 cm®, h = 6000 mm, a = 2.0 for truly pinned bases,

P, = mEl/(ah)* = 7*x205000%33320% 10*/(2.0X6000)> = 4682 kN
Py = 139 kN

Stiffness reduction factor (1-Py/P.,) = 1 - 139/4682 = 0.970

A3

A.3.2
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RH column:
P, = as LH column

Py = 139 kKN

Stiffness reduction factor (1- Py ¢/P,) = 1 - 139/4682 = 0.970

LH rafter:
I, =29380cm*, L = 34640 mm, « = 0.5 for single span “elastic” frame
P, = wEl/(al)® = 1*x205000x29380x 10%/(0.5x34640)> = 1982 kN

92 kN

PULS

Stiffness reduction factor (1-Py¢/P,;) = 1 - 92/1982 = 0.953
RH rafter:

P_ = as LH rafter

cr

Pyis = 93 kN
Stiffness reduction factor (1- Py /P, = 1 - 93/1982 = 0.953
2.2.2 Second-order magnification factors A33

Sway mode magnification factor A_,/(A, - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness:
K. - 1 D.2.5

2 Sh* |k
3E] 3E]

eff.R eff.c

This frame is taken as truly pinned, so there is no contribution to sway
stiffness from base stiffness.

LH rafter and column:

Rafter : Lix = I1(1-Py/P,) = 29380x0.953 = 28012 cm*
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Column : Ig;. = L(1-Py/P,) = 33320x0.970 = 32334 cm*
K, = 1
17321 (6000)? . (6000)>
3x205000x28012x10*  3Xx205000x 32334 x 10*
= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5 N/mm
RH rafter and column:
Rafter : Lgrx = L(1-Py/P,) = 29380x0.953 = 28008 cm*
Column: I;. = L(1-Py/P,) = 33320x0.970 = 32329 cm*
K, - 1
17321 (6000)* (6000)°

+

3% 205000 % 28008 x 10* 3205000 x 32329 x 10*

= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5 N/mm
Total frame:
2K = 212.5 + 2125 = 425 N/mm
H =0.005 x [Sum of the column reactions]
=0.005x(278) = 1.39 kN
6, = XZH/ZK = 1390/425 = 3.27 mm

Aqr = h/2008,, = 6000/(200 x 3.27) = 9.2
Sway mode magnification factor A, /(4 - 1) =9.2/(9.2 - 1) = 1.122
Symmetrical mode magnification

The symmetrical mode magnification is taken as the magnification arising from
using the effective inertia Ly = I(1 - Py ¢/P,,) of the members.

Sway mode magnification factor A,/(4,, - 1) = 1/[minimum (1- P/P,)]

= 1/0.953 = 1.049
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2.2.3 Deflection calculations
Sway deflections
The first-order sway deflection 6X| is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of A)
1
S h? . h3
3EI,  3EI,

LH rafter and column:

K =

Rafter : I, = 29380 cm*

Column: [, = 33320 cm*

K =

17321 (6000)? . (6000)3
3%205000%29380% 10*  3x205000 % 33320 X 10*

= 1/(0.00345 + 0.00105) = 1/0.00451 = 222.0 N/mm
RH rafter and column:
As LH rafter and column
Total frame:

First-order sway deflections:

2K = 222 + 222 = 444 N/mm

H = A XxHy,s =1232x139 =171kN
Y| = XH/YK = 1710/444 = 3.85 mm
X, =4 = 3.85 mm

A34

D.2.3
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Second-order deflections

X, = (X, - X ){A/(Ap - D} + X, {4/ (A - 1)}

oY, = O {A,/(Ay - 1}

85X, = (-79.4 - 3.85){1.049} + 3.85{1.122} = -83.0 mm
oY, = 0.5{1.049} = 0.5mm
0X. = (3.4 - 3.85){1.049} + 3.85{1.122} = 3.8mm
oY = 146.1{1.049} = 153.2 mm
X, = (86.3 - 3.85){1.049} + 3.85{1.122} = 90.8 mm
oY, = 0.5{1.049} = 0.5 mm

The hinges at “a” and “b” are so close to points C and E that the deflections

at the hinges can be assumed to be at points C and E. The effect on the
Energy summation is insignificant.

2.3 Bending deflections of the “plastic” frame

2.3.1 Stiffness reduction factors allowing for P.0 effects

LH column:

As “elastic” frame, stiffness reduction factor (1-Py,¢/P.) = 0.970
RH column:

As “elastic” frame, stiffness reduction factor (1- Py, s/P.,) = 0.970

LH rafter:

I, =129380cm', L =34640 mm, « = 1.0 for “plastic” frame
P, = mEI/(al)} = 7x205000%29380 % 10%/(1.0X34640) = 495 kN
Pys = 92 kN

Stiffness reduction factor (1-Py,¢/P.) = 1 - 92/495 = 0.814

A34

A4

A.4.2
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RH rafter:

P, = as LH rafter

cr

i

Pys = 93 kN

Stiffness reduction factor (1- Py, s/P,) = 1 - 93/495 = 0.813

2.3.2 Second-order magnification factors

Sway mode magnification factor A, /(A., - 1)

The notional sway deflection is calculated from the stiffness K, of the LH
column and rafter pair (the RH column is hinged at the top and pinned at the

bottom, reducing the stiffness to zero):

Sway stiffness from column and rafter stiffness:

1

K, = 2 3
S h . h

3EI 3EI

eff.R eff.c

This frame is taken as truly pinned, so there is no contribution to the sway
stiffness from base stiffness.

LH column and rafters:
Rafters : Lgr = I(1-Py/P,) = 29380x0.813 = 23894 cm*

32334 cm?

I

Column : Ig. = I(1-Py/P,) = 33320x0.970

K, = 2 3
34641 (6000) . (6000)
3% 205000 % 23894 x 10* 3%205000 X% 32334 % 10*

= 1/(0.00849 + 0.00109) = 1/0.00957 = 105 N/mm
Total frame:
ZK = 105 N/mm
H =0.005 X [Sum of the column reactions]

=0.005x(279) = 1.39 kN

A43

D.2.5
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4 = EH/ZK = 1390/105 = 13.3 mm

A = h/2006,, 6000/(200 x 13.3) = 2.26

erp
Sway mode magnification factor A /(4., - 1) = 2.26/(2.26 - 1) = 1.80
2.3.3 Deflections from vertical loads

The loads applied to the “plastic” frame = (4, - 4,)(loads at ULS)

(4, - 4) =(1.503 -1.232) =0.271

wP = 0.271(7.02Co0s?30° + 1.96Co0s30°) = 1.89 kN/m

Sway

This arises due to the rotation of the column without an adjacent hinge caused
by the end rotation of the rafter spanning from column to column.
3
p ST Ay
24 EIL A~ 1
P

w

Second-order end slope of the rafter, 6;,

1.89 X 346403
Gy = x 1.80 = 0.0975 radians

24 x 205000 x 29380 x 10*

Horizontal deflection of B, C, D = hé§;

= 6000 x 0.0975 585 mm

Mid-span drop

5 Wp S* Acrp
384 EI Acrp— 1

Mid-span deflection of the rafter, &;, =

5 1.89 x 34640*

O = 7 X 1.80 = 1055 mm
384 205000 x 29380 x 10

Opex = Opy /Cosa = 1055/Cos 30° = 1218 mm

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

A4S
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Oipread, D = 0, (Sing, + Singy) = & (2Sin 30°)

= 1055(2 x 0.500) = 1055 mm

6

spread,C

=0y, Sin @, = 1055 x 0.500 = 528 mm

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, 6,, = 0.0975 radians

Off-set of the hinge below the rafter, e 6000 - 5400 = 600 mm

Horizontal displacement of the hinge at G = ef, = 600 x 0.0975
= 59 mm
2.3.4 Deflections from horizontal loads
The loads applied to the “plastic” frame = (4, - A,)(loads at ULS)
(4, - 4) =(1.503-1232) =0.271
The ULS horizontal load in this load case is the notional horizontal force
H =(,-4) xNHF = 0.271 x 1.39 = 0.38 kN
The sway deflection is calculated from the sum of the stiffnesses K of the LH

column and rafter pair (the RH column is hinged at the top and pinned at the
bottom, reducing the stiffness to zero).

K, - : 1 : 1
Sh® _ h Mo
3El,  3EL) A, -1

The first-order stiffness of the LH rafter and column pair is the same as for
the “elastic” frame:

= 125.7

3EI

= 125.7 X (1/1.80) = 70.0 N/mm

A4.6
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Sway deflection = 380/70 = 5.4 mm
Mid-span drop
The sway deflection induces an additional deflection at the apex

2
s LML A,
2
™16 Ely A 1

where M = £ H h, = 380 X 6000 = 2.26 kNm

6 2
_ 2.26x10°x34641 X 1.80 — 51 mm

16 X205000 % 29380 % 10*

sm2

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

55pmd,D =0d,,, (Sing, + Sing,) = &3 (2Sin 30°)
= 5.1(2 X 0.500) = 5.1 mm
6spread,C = 6sm2 Sin & = 5.1 X 0.500 = 2.5 mm

2.4 Axial forces for the energy calculation

The total of the axial loads in the columns is not affected by second-order
effects, so P, = P, which is taken as the mid-height value calculated in 2.1
above,

LH column: P, = 139 kN

RH column: P, = 139 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.
Calculate P, and P, from the values in Section 2.2 of the worked example.

Mid-span drop = drop from “elastic” + drop from “plastic”

from 2.2.3 + from 2.3.3 + from 2.3.4

A5
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153.2 + 1218 + 5.1 = 1376 mm

1/{[1-(6, /h)] - 1} = 1/{[1-(1376/14660)] - 1} = 0.104

il

Increase in P,
LH rafter:
Mid-span axial = 58.3, giving P4 increase = 0.104x58.3 = 6.0 kN
P, =923+60 =983kN

RH rafter:

Mid-span axial = 58.6, giving P4 increase = 0.104x58.6 = 6.1 kN
P, =925+ 6.1= 98.6kN
2.5 Second-order Energy Summation A.2.2
6xl
-
Deflected

/ position

Original
position

b

The energy summation is required to calculate A,, following the methods in
A22
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Element for evaiuation of Pc*phi*s*d(phi) AB BC cD bD Eb
X-AXIS DEFLECTIONS

Deflections from the "elastic" frame

dxa 0.0 -83.0 3.8 0.0 90.8
dxb -83.0 3.8 90.8 90.8 90.8
(dxb - dxa) -83.0 86.8 87.0 90.8 0.0
Deflections from the "plastic” frame

From gravity loads

Sway of top of elastic column

dxa 0.0 5847 584.7 584.7 0.0
dxb 584.7 5847 5847 5847 584.7
(dxb - dxa) 584.7 0.0 0.0 0.0 584.7
Spread

dxa 0.0 0.0 5275 1055.0 0.0
dxb 0.0 527.5 1055.0 1055.0 1055.0
(dxb - dxa) 0.0 527.5 527.5 0.0 1055.0
Column hinge horizontal displacement

dxa 0.0 0.0 0.0 58.5 0.0
dxb 0.0 0.0 0.0 0.0 585
{dxb - dxa) 0.0 0.0 0.0 -58.5 58.5
From horizontal loads

Sway

dxa 0.0 54 54 54 0.0
dxb 5.4 5.4 54 54 54
(dxb - dxa) 5.4 0.0 0.0 0.0 5.4
Spread

dxa 0.0 0.0 25 5.1 0.0
dxb 0.0 25 51 5.1 51
(dxb - dxa) 0.0 2.5 2.5 0.0 5.1
|Totals of (dxb-dxa) at collapse 507.1 616.9 617.0 323  1708.6|
Y-AXIS DEFLECTIONS

Deflections from the "elastic” frame

dya 0.0 05 153.2 0.5 0.0
dyb 0.5 153.2 05 0.5 0.5
(dyb - dya) 0.5 1527 1527 0.0 0.5
Deflections from the “plastic" frame

Mid-span drop from gravity loads

dya 0.0 0.0 1218.2 0.0 0.0
dyb 0.0 12182 0.0 0.0 0.0
(dyb - dya) 0.0 1218.2 -1218.2 0.0 0.0
Deflections from the "plastic” frame

Mid-span drop from horizontal loads

dya 0.0 0.0 51 0.0 0.0
dyb 0.0 51 0.0 0.0 0.0
(dyb - dya) 0.0 5.1 -5.1 0.0 0.0
[Total of {dyb - dya) at collapse 0.5  1375.9 -1375.9 0.0 0.5]
psi (angle from X axis) 90.0 30.0 -30.0 90.0 90.0
[(dxb - dxa) at collapse]*Sin(psi) 507.1 3084  -3085 323 17086
[(dyb - dya) at collapse]*Cos(psi) 0.0 11916 -1191.6 0.0 0.0
phi * s at collapse 507 1 1500.0 -1500.1 323 1708.6
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.579 0.579 3.032
|Shortening = phi*s*d(phi) {(modulus}) 507.1  1500.0 868.1 18.7 5179.7|
AXIAL FORCES

Pc for columns and rafters at ULS 138.6 92.3 92.5 139.2 139.2
Total midspan drop 1376.5 1376.5

Midspan height 14660 14660

Increase rafter midspan axial by {1/(1-drop/height) - 1} 0.104 0.104

Midspan axial 583 58.6

Increase in rafter axial 6.0 6.1

Design axial 138.6 98.3 98.6 139.2 139.2
|incrementat energy = Pc*phi*s*d(phi) 70.3 147.4 85.6 2.6 721.0] Sum= 1027
WORK DONE IN ROTATING HINGES

Element for evaluating Mprd(phi) AB Ba aD bD Eb
MprA 0.0 0.0 402.5 4521 0.0
MprB 0.0 402.5 0.0 0.0 4521
MprA + MprB 0.0 402.5 402.5 452.1 4521
Incremental rotn = d{phi) from mechanism 1.000 1.000 0.579 0.579 3.032
[Mprd(phi) 0.0 402.5 2329 2616 1370.6f Sum= 2268
Factor on lambda_p 0.547

lambda_p from first-order analysis 1.503

lambda M 0.822
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2.6 Load factor at failure, A,
TP, ¢gsdp = 1027 ¢

M, = 2268 ¢
P, ¢ s do -
I =4 1 - |27 7"
EMprd(b ]

1027 ¢ ]
2268 ¢ )|

= 1.503%0.547 = 0.822

o ]|

Au < 1.0, so the frame has failed the check for in-plane stability.

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The “hand” method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that 4, were closer to 4.
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1 INPUT FROM FIRST-ORDER ANALYSIS

1.1 General Arrangement

25000 25000

800
2

254 x 254 x 73 UC

Cl |
7

B -
14200 Whé § l 15000
] é é '
i © Nominally pinned bases © |
/ R
1 50000 |
Angle of rafters: a =a = 8°
Span = 50 m
25
Developed length of rafter, apex to eaves = cos 8° = 25.246 m
Height of column from base to Neutral Axis of rafter = 15.0m
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1.2 Loading

[aaaaasnscaecsssascsssssssssssessses'sa'aa'a'a'aa'al

[aaasacssasaasnsasnssssasaaasnssassassssas s s s s
—
NHF NHF

V2 V2 S

Frame spacing = 8 m
Dead = 0.100 x 8.000 x 1.4 1.12 kN/m along slope
Service = 0.150 x 8.000 x 1.4 = 1.68 on plan
Imposed = 0.600 x 8.000 x 1.6 = 7.68 on plan
Self Weight = 113 x 102 X 1.000 X 1.4 = 1.58 along slope
Taking Notional Horizontal Forces as 0.5% of the column base reactions Clause 2.4.2.4

- Required NHF
ULS loads on plan

ULS loads on slope

ULS load transverse to slope = 9.36 Cos’8° + 2.70 Cos8° = 11.85 kN/m

Il

0.005 x 650 kN

1.68 + 7.68

1.58 + 1.12

3.25 kN

= 9.36 kN/m

= 2.70 kN/m
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1.3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate the
collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is not
necessary to repeat the calculation of the collapse factor by the Rigid-Plastic
method.

Failure Mechanism

D p
a
[o]

c E
B F
A G
. 4 o

24.70
A7
9 D b 4.0
a
[o]
c E
B F
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Find Node Locations
Pt A: (0.0, 0.0) = (0.0, 0.0)
Pt B: (0.0, 14.2) = (0.0, 14.2)
Pt C: (0.0, 15.0) = (0.0, 15.0)
Pt D: (25.0, {15.0 4+ 25.0 Tan 8}) = (25.0, 18.514)
Pt E: (50.0, 15.0) = (50.0, 15.0)
Pt F: (50.0, 14.2) = (50.0, 14.2)
Pt G: (50.0, 0.0) = (50.0, 0.0)

Pt a: ({9.170 Cos 8}, {15.0 + 9.170 Sin 8})

Pt b: ({50 - 24.700 Cos 8}, {15 - 24.700 Sin8}) =

Ptc: ({50 - 4.000 Cos 8}, {15 + 4.000 Sin 8}) -

Member Rotations
Rotation g

Rotationg.g

(9.081, 16.276)
(25.540, 18.438)

(46.039, 15.557)
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Find slope beta, g, of ac from horizontal
B = Tan'(Y,-Y)/(X.-X,) = Tan '(15.557 - 16.276)/(46.039 - 9.081)

-1.12°

Shortening of ac = dX,. Cos f# + dY,. Sin f

=Y, - Y)O - (X - Y5)E]Cosf + (X, - X - (X, - X5)01 Sin f

= (16.2766 - 15.5576) Cos f +(9.0816 - (-3.961)6) Sin §

= (0.7208) 0.9998 + (13.0426)0.0195 = 0.9738

Find slope gamma, y, of ab from horizontal

14 = Tan '(¥,-Y)/(X,-X,) = Tan'(18.438 - 16.276)/(25.540 - 9.081)
= 7.48°

gamma - beta = 7.48 - (- 1.12) = 8.60°

Slope delta, 6, of cb
5 = Tan '[(Y, - Y.)/(X, - X)]

= Tan '(18.438 - 15.557)/(46.039 - 25.540)= 8.00°

Angle L = gamma + delta = 7.48 + 8.00 = 15.48°

Angle M = 90 - (gamma - beta) = 90 - 8.60 = 81.40°

Angle N = 90 - (delta + beta) =90 - (8.0 - 1.12) = 83.12°
SinL/I = SinM/m = SinN/n

l = shortening of ac = 0.973¢

m = [(SinM/SinL) = 0.9736(Sin81.40°/Sin15.48°) = 3.6160
n = [(SinN/Sinl) = 0.973 #(Sin83.12°/Sin15.48°) = 3.62¢

length ab = [(¥, - ¥))* + (X, - X))*]'"? = 16.601

Rotation of ba = n/(length ab) = 3.626/16.601 = 0.2186
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length bc = [(Y, - ¥,)* + (X, - X,)*]"? = 20.700

Rotation of bc = m/(length bc) = 3.618/20.700 = 0.1746

1.4 Axial forces at ULS from first-order analysis

The analysis is not sensitive to the accuracy of the axial forces. Therefore the
axial forces may be calculated by elastic analysis, plastic analysis (factored down
from collapse to ULS) or elastic-plastic analysis.

LH column: at base = 324 kN, at haunch = 302 kN

LH rafter: at column 960 kN, at apex = 919 kN
RH rafter: at column = 960 kN, at apex = 919 kN

LH column: atbase = 326 kN, at haunch = 302 kN

1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force. These may be taken from section tables.

610x229% 113 UB M, = p, Sx = 265 x 3280 x 107 = 869 kNm

1.6 Load factor at formation of the first hinge, A,

From the frame analysis output, the load factor at the formation of the first
hinge is:

A =2.12

1.7 Plastic collapse factor, A,

From the frame analysis, the plastic collapse factor calculated by first-order
analysis is:

4, =2.28

Annex 1.2.
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1.8 Member inertias, |,

LH column: 610x229x113 UB: I, = 87300 ¢cm*
LH rafter: 610x229x113 UB: I, = 87300 cm*
RH rafter: as LH rafter

RH column: as LH column

1.9 Deflections of frame at A, (formation of the first hinge)

The deflections are found from first order elastic or elastic-plastic analysis.

O = 22.1 mm O = 3.2 mm
Oyc = 30.3 mm O,c = 3.3 mm
S = 49.1 mm O,p = 252.9 mm
O = 67.9 mm Oy = 3.3 mm
Or = 73.0 mm Oy = 3.2 mm

2 SECOND-ORDER ANALYSIS

2.1 Axial force in members

The axial force in the members is calculated from the first-order analysis output.
The values are taken as the mean of the axial force at the ends of the member
where there is no major step in the axial force. Where there is a major step in
the axial force, eg at the end of a tie in a tied rafter or at the underside of a
crane bracket on a column, the value should be taken as the mean of the ends of
the most highly loaded segment, e.g. between the ends of a tie and the apex in a
tied rafter.

LH col: take mid-height P, ¢ = (324 + 302)/2 = 313 kN

940 kN

LH rafter: take mid-length P, ¢ = (960 + 919)/2
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RH rafter: take mid-length Py, = (960 + 919)/2 = 640 kN

RH col: take mid-height P, ¢ = (326 + 302)/2 = 314 kN

2.2 Bending deflections of the "elastic” frame B.3

2.2.1 Stiffness reduction factors allowing for P.0 effects B.3.2

LH column:

I = 87300 cm®, h = 15000mm, « = 1.7 for nominally pinned bases

P, = TEl/(ah)* = 1*X205000%87300x 10%/(1.7x15000)> = 2716 kN

Pys = 313kN
Stiffness reduction factor (1-Py,/P,) = 1 - 313/2716 = 0.885
RH column:

P as LH column

cr

P,s = 314kN
Stiffness reduction factor (1-Py, ¢/P,) = 1 - 314/2716 = 0.884
LH rafter:

I 87300 cm®, L = 25246mm, a = 1.0

P

cr

T El/(el)? = m*x205000x 87300 % 10%/(1.0X25246)*
Pyis= 940 kN

Stiffness reduction factor (1- Py, /P,) = 1 - 940/2771 = 0.661
RH rafter:

P = as LH rafter

cr

Pyis= 940 kN

Stiffness reduction factor (1-Py, ¢/P,,) = 1 - 940/2771 0.661

= 2771 kN
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2.2.2 Second-order magnification factors
Sway mode magnification factor A ,/(A,, - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness:

K - 1

2 Sh> __h°
3E] 3E]

eff.R eff.c
Sway stiffness from base stiffness:
1

b sh® k>
2EI.  3EI

eff.c

LH rafter and column:

Rafter : Lyr = L(1-Py/P,) = 87300x0.661 = 57705 cm®
Column: I, = IL(1-Py, /P, = 87300%x0.885 = 77241 cm*
K, - !
25246 (15000)* . (15000)3
3x205000%x57705%x10*  3x205000x 77241 x10*
= 1/(0.01601 + 0.00711) = 1/0.02311 = 43.3 N/mm
K, - 1
5 (15000)° . (15000)°
2%205000%87300x10* 3205000 x77241x10*

= 1/(0.04715 + 0.00711) = 1/0.054 = 18.4 N/mm

RH rafter and column:

87300x0.661 = 57705 cm*

Rafter : IeffAR = Ix(lfpllLS/Pcr)

87300x0.884 = 77208 cm*

Column : L. = L(Q-Py/P,)

B.3.3

D.2.5

D.4
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K, = 1
25246 (15000)2 . (15000)°
3x205000%57705x10* 3 x205000x 77208 x 10*
= 1/(0.01601 + 0.00711) = 1/0.02311 = 43.3 N/mm
K, - 1
5 (15000)° . (15000)*
2x205000x 87300 x 10* 3 x205000x77241 % 10*

= 1/(0.04715 + 0.00711) = 1/0.054 = 18.4 N/mm

Total frame:

2K =433 + 184 + 433 4+ 184 = 123.4 N/mm
H = 0.005 X [Sum of the column reactions]

= 0.005 X (650) = 3.25 kN
8, = ZHIZK = 3250/123.4 = 26.3 mm

A = h/2006, 15000/(200 X 26.3) = 2.85

Sway mode magnification factor A.,/(4, - 1) = 2.85/(2.85 - 1)= 1.54
Symmetrical mode magnification

The symmetrical mode magnification is taken as the magnification arising from
using the effective inertia I, = I(1 - P, /P,,) of the members.

2.2.3 Deflection calculations
Sway deflections
The first-order sway deflection dX|, is calculated from the sum of the stiffnesses

K for each of the column and rafter pairs. (The base stiffness of nominally
pinned bases is not included because this is not a stability calculation like the

calculation of A_)

B.3.4

D.2.3
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K - 1

S h? . h?

3EI, 3EI,
LH rafter and column:
Rafter : I = 87300 cm*
Column : [, = 87300 cm*
K - 1

25246 (15000)° (15000)°
3 x205000 % 87300 % 10* 3% 205000 x 87300 % 10*
= 1/(0.01058 + 0.00629) = 1/0.01687 = 59.3 N/mm

RH rafter and column:
As LH rafter and column
Total frame:
First-order sway deflections:
ZK =593 + 59.3 = 118.6 N/mm
H = A, X Hy = 2.12 X 3.25 = 6.89 kN
A4 = YH/ZK = 6890/118.6 = 58.1 mm
oX,= 4 = 58.1 mm
Second-order deflections
§X2: (6X1 - axls) + §Xls{’lcrl/(’lcrl - 1)} B.3.4
oX, = (22.1 - 58.1) + 58.1{1.54} = 35.1 mm
O0Xc = (30.3 - 58.1) + 58.1{1.54} = 47.5 mm
0X,, = (49.1 - 58.1) + 58.1{1.54} = 75.9 mm

137




23 Rev A

The Steel 0 Job No: CDS 139 Page 12 of
Construction %@ Job Titte  BS 5950 Portals

Institute .
Subject  Second-order Worked Example:

Silwood Park, Ascot, Berks SL5 7QN Tied Portal Frame
Telephone: (01344) 623345

Fax: (01344) 622944 Client DETR Made by CMK  |pate  July 2001
CALCULATION SHEET Checkedby ~ WIS  [Date  July 2001
X = (67.9 - 58.1) + 58.1{1.54} = 104.4 mm
OX. = (73.0 - 58.1) + 58.1{1.54} = 112.1 mm

The hinges at “b” and “c” are so close to points D and E that the deflections at
the hinges can be assumed to be at the same points. The effect on the Energy
summation is insignificant.

Deflection at point where hinge “a” occurs

In the absence of more detailed analysis, the deflection at hinge “a” may be
taken as the mid-span deflection of the section of the rafter between the haunch
to the apex. The bending moment at the ends of this segment of rafter may be
assumed to be wL?/16 hogging, which gives the midspan bending moment equal
to wL?/16 sagging.

At A, , load transverse to slope =2.12 X 11.85 = 25.13 kN/m
4 4
Deflection= —— wL = 2 25'13(21610) = 223.8 mm
384 El 384 205000 x 57705 x 10*
Vertical deflection = 223.8 Cos 8° = 221.6 mm
Horizontal deflection = 223.8 Sin&° = 31.1 mm

The total deflection of “a” is taken as the mean deflection of C and D plus the
deflection calculated above:

SX, = (8Xc+ 6Xp)/2 +31.1 =475+ 75.9/2 +31.1 =929 mm

2.3 Bending deflections of the “plastic” frame

2.3.1 Stiffness reduction factors to allow for P.3 effects

LH column:

As “elastic” frame, stiffness reduction factor (1- Py ¢/P,;) = 0.885

RH column:

As “elastic” frame, stiffness reduction factor (1- Py, ¢/P,,) 0.884

B.4

B.4.2
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LH rafter:

As “elastic” frame, stiffness reduction factor (1- Py, /P,,) = (0.661

RH rafter:

The RH rafter has a plastic hinge at each, so the stiffness value is zero.

2.3.2 Second-order magnification factors

Sway mode magnification factor . /(A., - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K of
the LH column and rafter pair (the RH rafter is hinged at each end reducing the

stiffness to zero) and the LH and RH base stiffness:

Sway stiffness from column and rafter stiffness:

K, - 1
Sh* K ]
3EIeff.R 3EIeff.c

Sway stiffness from base stiffness:

1
5p3 h3 ]

K, =

+

2EI.  3EI

eff.c

LH rafter and column:
K, and K, are the same as for the “elastic” frame.
RH rafter and column:

K, is the same as for the “elastic” frame. K, is zero because the rafter is hinged
at both ends.

Total frame:

K 43.3 + 184 + 0 + 184 = 80.1 N/mm

H 3.25 kN as calculated above

B.4.3

D.3.5

D.4
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A4 = XH/ZK = 3250/80.1 = 40.6 mm

/Zcrp = h/2006"p = 15000/200 x 40.6) = 1.85

Sway mode magnification factor A, /(4 - 1) 1.85/(1.85 -1) = 2.18
2.3.3 Deflections from vertical loads

The loads applied to the “plastic” frame = (4, - 4,)(loads at ULS)

4, = 4) = (2.28-2.12) =0.16

Wp = 0.16(9.36C0s?8° + 2.70C0s8°) = 1.90 kN/m

Sway

This arises due to the rotation of the column without an adjacent hinge caused by
the end rotation of the rafter spanning from eaves to apex.

3
W S )Lcrp

24 EI A, - 1

End slope of the rafter, 6,

3.03 x 25246°
24 x 205000 x 87300 x 10*

6, = 2.18 = (.0155 radians

Horizontal deflection of eaves = hf;, = 15000 X 0.0155 = 232.1 mm

14200 X 0.0155 = 219.7 mm

Horizontal deflection of tie

Drop of mid-rafter hinge “a”

Midspan deflection of the raft S M ST
idspan deflection of the rafter, &, %4 E1, )"crp_ I

5 5 1.7 x 25246* 518 1221

k2 7384 205000 x 87300 x 10° - een mm

X deflection = &y, Sina = 122.1x0.139 = 17.0 mm

Y deflection = &y, Cos = 122.1x0.990 = 120.9 mm

B.4.5
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2.3.4 Deflections from horizontal loads

The loads applied to the “plastic” frame = (4, - 4,)(loads at ULS)

4, - 4) =(@2.28-2.12) =0.16

The ULS horizontal load in this load case is the notional horizontal force

H = (4,- 4) X NHF = 0.160 x 3.25 = 0.52 kN

The sway deflection is calculated from the sum of the stiffnesses X of the LH
column and rafter pair (the RH rafter is hinged at each end reducing the stiffness

to zero). The base stiffness of nominally pinned bases is not included because
this is not a stability calculation like the calculation of A,,.

K. - 1 1
) S h? . h3
3El,  3EI

crp

A -1

crp

The first-order stiffness of the LH rafter and column pair is the same as for the
“elastic” frame:

1
Sh* . h?
3El,  3EI

K, = 59.3 X (1/2.18) = 27.2 N/mm

= 59.3

Sway deflection = 520/27.2 = 19.1 mm
Drop of mid-rafter hinge at “a”

The sway deflection induces an additional deflection at the hinge point “a”

5 M, S* A
sm2 ~ g El A‘crp_ 1 where M = £ H, h, = 520 X 15000 = 7.8 kNm

6 2
. 7.8 x10°x25246 % 218

16 x 205000 x 87300 % 10*

3.8 mm

sm2

0.5 mm

X deflection = &, Sine = 3.8 X 0.139

B.4.6
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Y deflection = &, Cosa =38 x0990 = 37mm

2.4 Apex drop

Apex drop from the first-order elastic deflections

Y deflection at 4,, 6, = 252.9 mm

Apex drop at ULS, 6y, =0,/ 4 = 2529/2.12 = 119.3 mm
Apex drop from curvature shortening d,

Rafter transverse deflections at ULS:

ULS transverse load on rafters = 11.85 kN/m
. ) wS,
Take total transverse deflection = 5c52 =
384 EI

eff,R

2 11.85%(21610)"
384 205000 57705 % 10*

= 105.6 mm

(6 .V 2 2
Taking shortening = ( csZ) _ TP105.6F 1.3 mm
4S. 4x21610

Apex drop = 1.3/Sin 8° = 9.3 mm
Calculate the apex drop from increased rafter axial force
(i) Vertical component of rafter axial, V,
= Pp, Sinae = 919 Sin8° = 1279 kN
(ii) Reduced slope
Drop from first-order + curvature, d,= J, + 4/Sing,

=119.3 + 1.3/Sin 8" =119.3 + 9.3 = 128.6 mm

21610

S, = (25000 - 4000)/Cos 8° = 21400/Cos 8°

r

B.5

B.5.2

B.5.3

B.5.4
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Un-stressed rafter rise above haunch end, 4, = 21206 Sin 8° = 2951 mm
Reduced rafter rise above haunch end, 4, = 2951 - 128.6 = 2823 mm
Reduced rafter slope, @, = Tan™' (2823/21000) = 7.66°
(iii)  Reduced vertical component of the rafter, V,
= P, Sing, = 919 X Sin7.66° = 122.4 kN

(iv)  Required increase in rafter axial force, 6 P,

= (V, - Vp/Sin o,

= (127.9 - 122.4)/Sine, = 5.5/Sin7.66° = 41.1 kN
) Resultant increase in horizontal reaction at column top, 6 H,

= 6Py Cos a, =41.1 Cosey, = 40.7 kN
(vi)  Resulting increase in tie force, 6T

Haunch length = 4000/Cos @ = 4039 mm

¢ = 800 + 4039(Sina - Sina,) = 824 mm

6T = O0H_[(c + hy)/hy] = 41.1 (824 + 14200)/14200 = 43.1 kN
(vii)  Horizontal movement of Z due to tie stretching, JX;
Lateral displacement of the end of the tie:

3
X, = OT X halfspan _43.1x10°x25000 ~ 0.6 mm

A E 93.1 x100x%205000

e = 800 + 4000Tan8° = 1362 mm

= 0.6 mm

6X,r = OX,

hy 14200

e hTJ 0 ( 1362 + 14200)
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(viii) Horizontal movement of Z due to column bending, &, :

OH.c?(hy + ) 40.7x10°x824x (14200 + 824)

- 3EL 3205000 x 77241 = 0.9 mm
(ix)  Rafter shortening from increased axial strain:

S = TE S TR “Taoloases TO4™
x) Increased rafter drop d,

60X, =0X,r +0X,, =06+ 09 =15mm

d, = 60X, /Tana, + S8, /Sina, = 13.7 mm
(xi)  Revised rafter slope:

d, =6, + 4/Sing, + d, =119.3 + 1.3/Sin7.66° + 13.7

=119.3 + 9.7 + 13.7 = 142.8 mm

Revised rafter slope @, = Sin' [(2951 - 142.8)/21206] = 7.61°
(xii)  Check if d, /d, is less than 1.03

d, /d, = 142.8/128.6 = 1.11 > 1.03 so repeat steps (iii) to (xii)
2" (iii) Reduced vertical component of the rafter, V,

= Pg, Sing, = 919 x Sin7.61° = 121.7 kN
2" (iv) Required increase in rafter axial force, & Py

= (V, - V,)/Sin &,

= (127.9 - 121.7)/Sin o, = 6.2/Sin 7.61° = 46.7 kN
2" (v) Resultant increase in horizontal reaction at column top, H,

= 0Py Cos o, = 46.3 Cosa, = 46.3 kN
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2" (vi) Resulting increase in tie force, 6T

Haunch length = 4000/Cos « = 4039 mm
¢ = 800 + 4039(Sin« - Sina,) = 827 mm
6T = 0H [(c + hy)/hy] = 46.3 X (827 + 14200)/14200 = 49.0 kN

2" (vii) Horizontal movement of Z due to tie stretching, 6 X;

Lateral displacement of the end of the tie:

OT X halfspan _ 49.0x10°x25000

0X; = 0.6 mm
ALE 144.0x 100 % 205000
e = 800 + 4000 Tan8° = 1362 mm
e + hT
GXZT = GXT = 0.7 mm
T

2" ( viii ) Horizontal movement of Z due to column bending, &, :

3El, 3X 205000 X 77241

2" (ix ) Rafter shortening from increased axial strain:

OP_XS 3
ss. = OPRXSi_ _467x10°x25246 _ 0

AE  144.0x100X 205000

2" (x) Increased rafter drop d,
60X, = 06X, +6X,, =07+ 1.0 = 1.7mm

d, = 06X, /Tan @, + 68, /Sin &, = 15.8 mm
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24 (xi ) Revised rafter slope:

revised d, = 6, + A/Sina, + d, 119.3 + 1.5/Sin7.43° + 15.8

=]1]9.3 + 9.8 + 15.8 144.9 mm

I

Revised rafter slope @, = Sin™' [(295]1 - 144.9)/21206] = 7.605°
2™ ( xii ) Check if revised d, /d, is less than 1.03

revised d, /d, = 144.9/142.8 = 1.01
The additional apex drop was 1% of previous - accept this value

Second-order axial force in rafters = P, + 6Py, = P, + 46.7 kN

2.5 Axial forces for the energy calculation

The total of the axial loads in the columns is not affected, so P, = P, which is
taken as the mid-height value calculated in 2.1 above.

The axial force in the rafters is the first-order force calculated in 2.1 above plus
the second-order increase in force, 6Py , from 2.4 above

LH col: P, = 313 kN
LH rafter: P, = 940 + 46.7 = 987 kN

RH rafter: P, = 940 + 46.7 = 987 kN

RH col: P, = 314 kN
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2.6 Second-order Energy Summation

6xl

Deflected

/ position

Original
position

=
—>

O

The energy summation is required to calculate £ ,, following the methods in
B.2.2

B.2.2
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Element for evaluation of Pc*phi*s*d(phi) AB 8C Ca aD Db be cE GF FE
X-AXIS DEFLECTIONS

Deflections from the "elastic" frame

dxa 0.0 351 47.5 92.9 75.9 75.9 104 4 0.0 1121
dxb 351 475 92.9 75.9 75.9 104.4 104 4 1121 104.4
(dxb - dxa) 351 124 454 -16.9 0.0 284 0.0 1121 -7.7
Deflections from the "plastic” frame

From tranverse loads on rafter

Sway of top of elastic column

dxa 0.0 219.7 2321 2321 2321 2321 2321 0.0 219.7
dxb 219.7 2321 2321 2321 2321 232.1 2321 2197 232.1
{dxb - dxa) 219.7 12.4 0.0 0.0 0.0 0.0 0.0 219.7 124
Drop of mid-rafter hinge

dxa 0.0 0.0 0.0 17.0 0.0 0.0 0.0 0.0 0.0
dxb 0.0 0.0 17.0 0.0 0.0 0.0 0.0 0.0 0.0
(dxb - dxa) 0.0 0.0 17.0 -17.0 0.0 0.0 0.0 0.0 0.0
From horizontal loads

Sway

dxa 0.0 19.1 19.1 19.1 19.1 191 19.1 0.0 19.1
dxb 191 191 19.1 19.1 181 19.1 19.1 19.1 19.1
(dxb - dxa) 19.1 0.0 0.0 0.0 0.0 0.0 0.0 19.1 0.0
Drop of mid-rafter hinge

dxa 0.0 0.0 0.0 0.5 0.0 0.0 00 0.0 0.0
dxb 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
{dxb - dxa) 0.0 0.0 0.5 -0.5 0.0 0.0 0.0 0.0 0.0
[Total of {dxb - dxa) at coilapse 312.9 63.8 1014 5.1 39.0 67.4 39.0  389.9 43.7}
Y-AXIS DEFLECTIONS

Relative deflections from apex drop

dya 0.0 0.0 0.0 80.3 144.9 142.0 207 0.0 0.0
dyb 0.0 0.0 80.3 144.9 142.0 207 0.0 0.0 0.0
(dyb - dya) 0.0 0.0 80.3 64.5 -29 1213 -20.7 0.0 0.0
Deflections from the "elastic™ frame

Drop of mid-rafter hinge

dxa 0.0 0.0 0.0 2216 0.0 0.0 0.0 0.0 0.0
dxb 0.0 0.0 2216 0.0 0.0 0.0 0.0 0.0 0.0
(dxb - dxa) 0.0 0.0 2216 -221.6 0.0 0.0 0.0 0.0 0.0
Deflections from the "plastic” frame

Drop of mid-rafter hinge from transverse loads on rafter

dxa 0.0 0.0 0.0 120.9 0.0 0.0 0.0 0.0 0.0
dxb 0.0 0.0 120.9 0.0 0.0 0.0 0.0 0.0 0.0
(dxb - dxa) 0.0 0.0 1209 -120.9 0.0 0.0 0.0 0.0 0.0
Drop of mid-rafter hinge from sway loads

dxa 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0
dxb 0.0 0.0 37 0.0 0.0 0.0 0.0 0.0 0.0
(dxb - dxa} 0.0 0.0 3.7 -3.7 0.0 0.0 0.0 0.0 0.0
[Totats of (dyb - dya) at collapse 0.0 0.0 4266 -281.7 29 1213 -20.7 0.0 0.0]
SHORTENING

psi (angle from X axis) 90.0 90.0 8.0 8.0 -8.0 -8.0 -8.0 90.0 90.0
[(dxb - dxa) at collapse]*Sin(psi) 312.9 63.8 14.1 0.7 54 9.4 -54 3899 437
[(dyb - dya) at collapse]*Cos(psi) 0.0 0.0 4224 -2789 -28 -1202  -205 0.0 0.0
phi * s at collapse 312.9 63.8 436.5 -2782 -83 -1295 -25.9 389.9 437
Incremental rotn = d(phi) from mechanism 1.000 1.000 1.000 0.218 0.218 0.174 1.000 1.000 1.000
[Shortening = phi*s*d(phi) {modulus) 3129 63.8 436.5 60.7 1.8 22.6 25.9 389.9 43.7]
AXIAL FORCES

Pc for columns and rafters at ULS 313.0 313.0 938.5 939.5 939.5 939.5 939.5 314.0 314.0
Second-order increase in rafter axial 46.7 46.7 46.7 467 46.7

Design Axial 313.0 313.0 986.2 986.2 986.2 986.2 986.2 314.0 314.0
[Incremental energy = Pc*phi*s*d(phi) 97.9 200 4305 59.8 1.8 223 255 1224 13.7] Sum= 794
WORK DONE IN ROTATING HINGES

Element for evaluating Mpr d{phi} AB BC Ca aD Db bc cE GF FE
MprA 0.0 0.0 0.0 869.2 0.0 869.2 869.2 0.0 0.0
MprB 0.0 0.0 869.2 0.0 869.2 869.2 0.0 0.0 0.0
MprA + MprB 0.0 0.0 869.2 869.2 869.2 1738.4 869.2 0.0 0.0
Incremental rotn = d(phi) from mechanism 1.000 1.000 1.000 0.218 0.218 0.174 1.000 1.000 1.000
[Mprd(phi) 0.0 0.0 869.2 189.5 189.5 302.8  869.2 0.0 0.0] Sum= 2420
Factor on lambda_p 0672

lambda_p from first-order analysis 2.280

lambda_M 1.532
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2.6 Load factor at failure, A, B.7
X P, ¢sdgp = 7% ¢
LM, do = 2420 ¢
1
IS PR [M}
%M, dg ) |
1
= = 2.280%0.672 = 1.532

A

2280 , [ 794 &
2420 ¢) |

Ay > 1.0, so the frame has passed the check for in-plane stability.
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1.

INPUT FROM FIRST-ORDER ANALYSIS

The calculations have been carried out using spreadsheet software. The
numerical values presented below are the values from the spreadsheet rounded

to a suitable number of significant figures.

1.1 General Arrangement
15000 15000 15000 15000
3000 1500|1500 3000 3000 1500 1500 3000 |
600 L |
L = 6.0° 6.0° — =}
457x191x67 UB 457x191x67 UB

9400

@
5
e
~

X
o
=
IS
©
<

Nominally pinned

30000

203x203x60 UC

bes
Nominafly pmned

30000

457x191x74 UB

Nominaily pinned

Angle of rafters:

Span = 30 m

Developed length of rafter =

Span 1

©

o, =0, =6

s 6°

= 30.165 m

Height of column from base to Neutral Axis of rafter = 10.0 m

Span 2
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1.2 Loading

[acacacsscsasasssssasassssasssssasassssssa'a's e
[aaascscsssassaassssssasssaasssaasssasaasssaaaal

Frame spacing = 6m

Dead 0.100 x 6.000 x 1.4
Service = 0.150 x 6.000 x 1.4

Il

0.840 kN/m  along slope
1.260  on plan

Imposed = 0.600 x 6.000 x 1.6 = 5.760  on plan
Self Weight = 80 x 10? x 1.000 x 1.4 = 1.120 along slope
30
Developed Length of Rafters = = 30.165
cos 6°

Notional Horizontal Force
0.5% factored load on span
= 0.5% x 2 x [30.165 x (0.84 + 1.12) + 30 x (1.26 + 5.76)]

= 0.005 x 2 X [59.1 + 210.6] =2.7kN

C12.4.24.
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1.3 Plastic Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism (determined elsewhere). These are the incremental
rotations as used to calculate the collapse factor of the frame using the classic
Rigid-Plastic (Virtual Work) method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the

calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism

The mechanism will have two instantaneous centres of rotation, as shown
below (locations of hinges determined from analysis).
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Node Locations (coordinates)

Pt A- (0.0, 0.0) = (0.0, 0.0)
Pt B - (0.0, 10.0) = (0.0, 10.0)

Pt C- (15.0, {10.0 + 15.0Tan6}) — (15.0, 11.577)
Pt D- (30.0, 10.0) = (30.0, 10.0)

Pt E - (30.0, 0.0) = (30.0, 0.0)

Pt F - ({30.0+15.0}, {10.0 + 15.0Tan6}) = (45.0, 11.577)
Pt G- (60.0, 10.0) — (60.0, 10.0)

Pt H~ (60.0, 0.0) = (60.0, 0.0)

Pta - (10.911Cos6, {10.0 + 10.911Sin6}) = (10.851, 11.141)
Pt b - ({30.0-2.993Cos6}, {10.0 + 2.993Sin6}) = (27.023, 10.313)

Ptc - ({60.0-10.911Co0s6}, {10.0 + 10.911Sin6}) = (49.149, 11.141)

Pt d - (60.0, 9.400) = (60.0, 9.400)

Find Centre of Rotation 7,

X, -X -
Y, = E A _ 30.0 - 0.0 — 93759 m
(ﬂ] . (d_X] ( 10.851] . ( 30—27.023]
ar),. \dr), 11.141 10.313
dX
X, =X, +|| =] x¥,| =0.0+(0.97397x23.760) =23.142m
dy) ..
Pt~ (23.142, 23.759)
Find Centre of Rotation /,
X, - X -
v, = w - X _60.0 - 30.0 — 17.454 m
(_dﬁ] ) (ﬁj (1.719) - (0.0)
ay).. -\ ay),

X, 60.0 (obvious by inspection)

Pt I, - (17.454, 60.0)
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Hinge Rotations
Taking the instantaneous rotation about A as &
Y 11.141
= 0 X 2 = : =
G, Y,-Y, 23.759 - 11.141 0.883 6
Y, -Y, 23.759 - 10.313
- 0, x L _ 088360 x 2= : -
O I Y, 10313 1.151 @
Y
6, = 6 x —— _ 11510 x — 1141
Y,-Y, 17.454 - 11.141
= 1.151 8 x 1.765 = 2.031 @
Y -Y _
6, = O, X 24 50319 x 17.454 - 9.400
i 9.400
= 2.031 8 x 0.857 = 174046
1.4 Axial forces at ULS from first-order plastic analysis
Span 1
LH column: at base =131.9 kN, at haunch = 122.3 kN
LH rafter: at column = 59.8 kN, at apex = 46.0 kN
RH rafter: at column = 62.0 kN, at apex = 48.2 kN
RH column: at base = 291.5 kN, at haunch = 283.3 kN
Span 2
LH rafter: at column = 62.0 kN, at apex = 48.3 kN
RH rafter: at column = 60.1 kN, at apex = 46.3 kN
RH column: at base = 132.8 kN, at haunch = 122.6 kN
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1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS 5950-1:2000, Annex 1.2. These
may be taken from section tables.

M, = p,S,<12p,2Z,

For the axial forces in this frame under this load case

404 kNm

M, rafters(457 x 191 x 67 UB)

454 kNm

M., external columns (457 x 191 x 74 UB)

1.6 Load factor at formation of the first hinge, A,

From the frame analysis output, the load factor at the formation of the first
hinge is:

A, = 0.957

1.7 Plastic collapse factor, A,

From the frame analysis, the plastic collapse factor calculated by first-order
analysis is:

A, = 1.122

1.8 Member inertias, |,

External columns: 457x191 x 74 UB: I, = 33320 cm*
Rafters: 457x191 x 67 UB: I, = 29380 cm*
Internal column: 203x203 x 60 UC: I, = 6125 cm*

Cl4.2.5
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1.9 Deflections of frame at A, (formation of the first hinge)

The following deflections are from the first order frame analysis output.

(5)( B
(5x C
o)

xD

dxF

(5x G

2.

= -33.0 mm
= - 8.8 mm
= 15.3 mm

= 38.3 mm

= 61.4 mm

Oy
Oyc
I
Oy

Il

SECOND-ORDER ANALYSIS

2.1 Axial forces in members

0.6 mm
234.7 mm
1.7 mm

224.6 mm

0.6 mm

Use the average axial forces in the members, from first order analysis

Span 1

LH col:

LH rafter:

RH rafter:

RH col:

Span 2

LH rafter:

RH rafter:

RH col:

take mid-height P, ¢
take mid-length Py
take mid-length Py,

take mid-height Py ¢

take mid-length P,
take mid-length P,

take mid-height Py

Il

(131.9 + 122.3)/2
(59.8 + 46.0)/2
(62.0 + 48.2)/2

(291.5 +283.3)/2

(62.0 + 48.3)/2
(60.1 + 46.3)/2

(132.8 +122.6)/2

127.1 kN

52.9 kN

55.1 kN

287.4 kN

= 55.2 kN

= 53.2 kN

= 127.7 kN
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2.2 Bending Deflections of the “elastic” frame
2.2.1 Stiffness reduction factors allowing for P.0 effects A.3.2
Columns
The stiffness of each external column differs from the stiffness of the internal
column. Therefore the reduction in frame stiffness is calculated from the sum
of the ULS loads in the columns and the sum of the critical loads of the
columns.
Sum of load in columns, Py, = 127.1 + 287.4 + 127.7 = 542.2 kN
External columns: I, = 33320 cm* A.3.2
A = 10000 mm
Nominal pinned bases o = 1.7 A2.4
P.. = mEI/(ah)* = m?x205000%33320x 10%/(1.7x10000)*> = 2333 kN
Internal column: I, =6125cm*
A = 10000 mm
Nominally pinned bases o = 1.7
P, = mEIl/(ch)’ = w*Xx205000%6125%x10%/(1.7x10000)> = 429 kN
Sum of load in columns, 2P, = 2333 + 429 42333 = 5094 kN
(1 - TPy /Zp.) = (1 - 542.2/5094) = (1 - 0.147) = 0.894
1/(1 - P, /Zp,) = 1.119
Rafters A3.2
Span 1
Average Py s = (52.9 + 55.1)/2 = 54.0 kN
I = 29380 cm*, L = 30165mm, o = 1.0

X

P, = mEl/(aL)* = n*%205000x29380x10*(1.0%x30165)> = 653 kN
Reduction factor is given by:

(A-Py s /P,) = (1 - 54.0/653) = (1 - 0.083) = 0.917
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Span 2
Average Py s = (55.2 + 53.2)/2 = 54.2 kN
I, =129380cm‘, L = 30165mm, o = 1.0

X

P

cr

= w’El/(al)’ = 7*x205000%29380x 10*/(1.0x30165)* = 653 kN
Reduction factor is given by:

(1-Pys /P.) = (1 - 54.2/653) = (1 - 0.083) = 0.917

2.2.2 Second order magnification factors

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

k= %1 “{ sn? - PE D.2.5
3EIeff,R ’ 3E1eff.c]
LH Rafter and Column
Liw=1Ia (1 -P/P) = 29380 (1 - 54/653) = 26951
Le.=1(1-PP) =33320(1 - 127.1/2333) = 31505
2 X 2
iy~ Soswassiir
3 3
3;1m i 3><205001(1(10301505><1o4 - 0000
Kswr = 501820 1 000516 8 N/mm
RH Rafter and Column
Liw=1Ia (1 -PIP) = 29380 (1 - 54.2/653) — 26944
Ly =1 (1 - PIP) = 33320 (1 - 122.6/2333) — 31496
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2 2
Sh _ 30165 % (10000) _ 0.01820
3El n  3X205000%26944 x 10*
3 3
h = 10000 = 0.00516
3El,.  3x205000x31496x10*
Ko = L = 42.8 N/mm
0.01820 + 0.00516
Sway stiffness from nominal base fixity
H 1
K =2 =
b 6 ( 5]’13 h3 D.4
o+
2E1 3EL
K .. - L - 23.9 N/mm
(0.0366 + 0.00516)
Total Frame Stiffness
ZK = Kgp + Koo + K2 + Kpen
YK =428 + 23.9 + 42.8 +23.9 = 133.5 N/mm
H = 0.005 X [sum of column reactions] = 0.005 X [542.2] = 2.711 kN
5 - H _ 2.711x1000 _ 20.31 mm
ZK, 133.5
P h _ 10000 _9s
2006 , 200 x 20.31
Sway mode magnification
/lcrl - 1.7
/lcrl -1
2.2.3 Deflection calculations A.3.4
Sway deflections D.2.3

The first-order sway deflection 6X,; is calculated from the sum of the
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stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of A.).

k-4 !

é (Sh2 h?

+

3EI,  3EI

Sub Frame 1 (Elastic)

2 2
Sh= 30165 x(10000) - 0.01669
3El,  3x205000%29380x 10*
3 3
h™ 10000 = 0.00488
3EI,  3x205000x33320x 10*
Koy = 1 = 46.4 N/mm
0.01669 + 0.00488
Sub Frame 2 (Elastic)
As Sub frame 1
Kgy, - ! - 46.4 N/mm
0.01669 + 0.00488
Total Frame Stiffness
ZK =Ky + Ko
2K =464 + 46.4 = 92.7 N/mm
First-order sway deflection
AH
- (1 0.957%2.711X1000 _ 27.99 mm
P ZK, 92.7
/lch /lcrl
X, = (6X,-8X|) X |————| + X, X
/lcr2 -1 /lcrl -1

A34
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Values of JX, and &Y, are taken from first order analysis (See Sheet 7).

O = (-33.0-27.99) x 1.12 + 27.99 X 1.7 =-21.1 mm
6 =06 x1.12 =0.7mm

Oc = (-8.8-27.99) X 1.12 + 2799 x 1.7 = 6.0 mm
O,c = 234.7 X1.12 = 262.7 mm

6p = (153-27.99) x 1.12 + 27.99 X 1.7 = 32.9 mm
6p =17 x 1.12 = 1.9 mm
O = (38.3-27.99) x 1.12 + 27.99 x 1.7 = 58.7 mm

S =224.6 X 1.12 = 251.4 mm
b =(61.4-27.99) X 1.12 + 27.99 x 1.7 = 84.5 mm
b =0.6x 1.12 =07 mm

2.3 Bending deflections of the “plastic” frame

2.3.1 Stiffness reduction factors to allow for P.) effects

Columns: as the “elastic” frame

External Column RHS (1 - 2Py /ZP,) = 0.946
Internal Column (1 - ZPy/2P,) = 0.330
External Column LLHS (1 - ZPy s /ZP,) = 0.945
Rafters: as the “elastic” frame, because that used « = 1.0

Span 1: (1-Py /P, = 0.917

Span 2: (1-Py,/P.) = 0.917

2.3.2 Second Order Magnification Factor

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of

the rafter and column pairs between plastic hinges and the base stiffness of
each column.

A4

162




The Steel 0 Job No: CDS 139 Page 13 of 22 Rev
Construction Job Title  BS 5950 Portals
Institute
Subject  Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN Two-span Portal Frame
Telephone: {(01344) 623345
Fax: (01344) 622944 Client DETR Made by CMK |pate May 2001
CALCULATION SHEET Checked by WIS Date  July 2001
Sway stiffness from column and rafter stiffness.
1
K =
? Sh? . _h 3 D.3.5
3Elgr  3ElLg,
Sub Frame 1: LH Column and Rafter Span 1
2 2
Sh _ 30165 X (10000) - 0.01820
3Elp  3X%205000%26951x 10*
3 3
h = 10000 = 0.00516
3ElL;.  3x205000x31505x%10*
Ko = L = 42.8 N/mm
0.01820 + 0.00516
Sub Frame 2: Internal Column and Rafter Span 2
2 2
Sh _ 30165 % (10000) - 0.01820
3Elr  3x205000%26944 % 10*
3 3
h _ 10000 _ 0.0805
3El . 3x205000%2020x 10*
K, = 1 = 10.1 N/mm
0.01820 + 0.0805
Nominal Base fixity
H 1
K = e— =
b S 5p3 . B3 D.4
2EI  3EIL
External Column
K, o = 1 = 22.8 N/mm
(0.0387 + 0.00516)
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Internal Column

= 1 = 1.5 N/mm

Kb int
(0.2106 + 0.0805)

Total Frame Stiffness

EK = Ksubl + Kbex[ + Ksub2+ Kbin[ + Kbex[

K =42.8 +22.8 + 10.1 +1.5 + 22.8 = 100.0 N/mm
5 - DH _27UX1000 o0y
P Tk, 110.0
h 10000

o = = - 1.84
P 2008,  200x27.1

Sway mode magnification factor

P _| =2.185
/Zcrp -1
233 Deflections of the “plastic” frame from gravity loads
Loads

The loads applied to the “plastic” frame = (4, - A))(loads at ULS)
4, and A, are taken from the first order plastic analysis
(A4, - 4) = (1.122 - 0.957) = 0.165
Slope of rafters a, = @, = @ = 6°, giving Cosa = 0.9945
Service load and imposed load are specified “on plan”,
at ULS, w,,, = 1.26 + 5.76 = 7.02 kN/m
giving a transverse load on the “plastic frame”
= (4, - A)(W, pyay at ULS)CoS’

= 0.165x7.02(0.9945)* = 1.15 kN/m

D.3.5
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Dead load and self-weight are values “along the slope”,
at ULS, W, gope = 0.84 + 1.12 = 1.96 kN/m
giving a transverse load on the “plastic frame”

= (4, = AW, gope at ULS)Cosa

= 0.165x1.96x0.866 = 0.32 kN/m
Summing loads from components “on plan” and “along the slope”,
wp = 1.15+ 032 = 1.47 kN/m
Sway A.4.5
This arises due to the rotation of the column without an adjacent hinge.

Wp s3
First-order end slope of the rafter as a simply supported beam, 6 = 24 EI
o ow, §° Aery

Second-order end slope of the rafter, G, = 24 EI, /lcrp - 1]
E = 205000 N/mm?*
I, = 29380 cm*
6,, - .47 x 30165 X 2.185 = 0.06087 radians

24 % 205000 x 29380 x 10*

Horizontal deflection of Point B, C, D = kg,

10000 x 0.06087 = 608.7 mm

Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:

A

crp

A -1

crp

5 - 5 W sS4
b2
384 E I,
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4

6. -2 x 1.47 x 30165 x 2.185 = 573.8 mm

>384 205000 x 29380 x 10*

5
- B8 5790 mm

o
X cos @ 0.9945

Span 2: as Span 1

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:

Full span 6e.¢ = G5, (Siney; + Sing) = 6 (2Sin 6°)

573.8 (2 x 0.1045) = 120.0 mm
Half span O.y,q = J3, Sin;, = 573.8 x 0.1045 = 60.0 mm
Span 2: as Span 1

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, &, = 0.06087 radians

Off-set of the hinge below the rafter, ¢ = 10000 - 9400 = 600 mm
Horizontal deflection of Point M = eb

= 600 x 0.06087 = 36.5 mm
2.3.4 Deflections of the “plastic” frame due to horizontal loads
Loads
The unfactored loads applied to the “elastic frame” included the horizontal

loads and were in proportion to the ULS loads, so the additional horizontal
load on the plastic frame = (4, - 4,)(loads at ULS)

A.4.5

(Sheet 15)

A4.6
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A

P

- A) = (1.122 - 0.957) = 0.165

Slope of rafters @, = &, = @ = 6°, giving Cose = 0.9945

Sway

Total of column forces = 542.2 kN

0.5% x of total of column forces (elastic frame) = 0.005x542.2 = 2.7 kN
Additional horizontal load on plastic frame

H =0.165 x 2.7 x 1000 = 447N

For a multi-span frame, the sway deflection is calculated from the sum of the
stiffnesses K for each of the spans:

K - 1 1
Sh> h® A
+ crp
3EI,  3EL o1
crp
K, - ! . ! - 45.1
sh® k')  0.0167 + 0.0055
3EI,  3EI
K, , - ! - ! - 215
S h? N h3 0.0167 + 0.0297
3El,  3EL

Total Frame Stiffness

K=K, + K,

YK, = 45.1 + 21.5 = 66.6 N/mm

Second-order least sway deflection of the column top

4, - H_ 0447000 5 1g5 147 mm

XK 66.6

S

A.4.6
(Sheet 8)

(Sheet 2)
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Mid-span drop

Second order sagging deflection of a straight rafter:

ML

2

'zcrp

where M = X H, h,

6sm2 B
16E1,

I

P

H, is the proportion of the horizontal force carried by each sub frame
calculated as a proportion of the stiffness X,.

Sub frame 1:

Drop in the apex of rafter span 1 due to horizontal load.

0.293 x 1000 x 10000 (30165)*

x 2.185 = 6.1 mm

sm2

Sub frame 2:

16 x 205000 x 29380 x 10*

Drop in the apex of rafter span 2 due to horizontal load.

_ 0.154 x 1000 x 10000 (30165)*

X 2.185 = 3.2 mm

sm2

Spread

Span 1:

Full span spread

Half span spread

Span 2:

Full span spread

Half-span spread

16 x 205000 x 29380x10*

= 6, (Sine, + Sina,) = 6.1 (Sin 6° + Sin 6°)
= 6.1 (0.1045 + 0.1045) = 1.3 mm
= 6 .y (Sine) = 6.1 (Sin 6°)

= 6.1 (0.1045) = 0.6 mm
= 0, (Sing, + Sing) = 3.2 (Sin 6° + Sin 6°)

3.2 (0.1045 + 0.1045) = 0.7 mm

= 6 (Sina) = 3.2 (Sin 6°)

3.2 (0.1045) = 0.3 mm
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2.4 Axial forces for the energy calculation
The total of the axial forces in the columns is not affected by second-order
effects because of vertical equilibrium, so P, = P, which is taken as the

mid-height value calculated in 2.2 above.

Column Forces

Span 1:
LH col: take mid-height P, = 127.1 kN
RH col: take mid-height P, = 287.4 kN
Span 2:
RH col: take mid-height P, = 127.7 kN

Rafter Forces

The rafter axial forces are affected by the drop of the rafters at mid-span.

Span 1:

Total mid-span drop = 845.7 mm

Increase in P, = {1/[1-(6, /h)]-1} = {1/[1-(845.7/11577)] - 1}

= 0.079

LH rafter:take mid-length P, = 52.9 kN

Mid-span axial= 46.0 (sheet 5), giving P4 increase = 0.079x46.0 = 3.6 kN
P, =529 + 3.6 = 56.5 kN

RH rafter:take mid-length P, = (62.0 + 48.2)/2 = 55.1 kN

Mid-span axial = 48.2(Sheet 5), giving P4 increase = 0.079x48.2 = 3.8 kN
P, = 55.1 + 3.8 = 58.9 kN

Span 2:

Total mid-span drop = 831.5 mm

(Sheet 7)
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Increase in P, = {1/[1-(6, /h)]-1} = {1/[1-(831.5/11577)] - 1}
= 0.077
LH rafter:take mid-length P, = (62.0 + 48.3)/2 = 55.2 kN
Mid-span axial = 48.3, giving P4 increase = 0.077x48.3= 3.7 kN
P, =552+37 =589kN
RH rafter:take mid-length P, = (60.1 + 46.3)/2 = 53.2 kN
Mid-span axial = 46.3, giving P4 increase = 0.077X46.3 = 3.6 kN

P, =532+36 =568kN

2.5 Second-order Energy Summation

6xl
<
Deflected
/ position
Original /
position

6){2

The following spreadsheet shows the second order energy summation.
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Element for evaluation of Pc*phi*s*d(phi) AB BC cD ED DF FG dG Hd
X-AXIS DEFLECTIONS

Deflections from the “elastic” frame

dxa 0.0 -21.1 6.0 0.0 329 58.7 845 0.0
dxb -21.1 6.0 329 329 587 845 845 845
(dxb - dxa) -21.41 271 27.0 32.9 25.7 25.9 0.0 84.5
Deflections from the “"plastic” frame

From gravity loads

Sway of top of elastic column

dxa 0.0 608.7 608.7 0.0 608.7 608.7 608.7 0.0
dxb 608.7 608.7 608.7 608.7 608.7 608.7 608.7 608.7
(dxb - dxa) 608.7 0.0 0.0 6087 0.0 0.0 0.0 608.7
Spread

dxa 0.0 0.0 60.0 0.0 120.0 179.9 239.9 2399
dxb 0.0 60.0 120.0 120.0 179.9 239.9 239.9 0.0
(dxb - dxa) 0.0 60.0 60.0 120.0 60.0 60.0 0.0 -239.9
Column hinge horizontal displacement

dxa 0.0 0.0 0.0 0.0 0.0 0.0 36.5 0.0
dxb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.5
(dxb - dxa) 0.0 0.0 0.0 0.0 0.0 0.0 -36.5 36.5
From horizontal loads

Sway

dxa 0.0 147 14.7 0.0 147 147 147 0.0
dxb 147 147 14.7 147 147 147 14.7 147
(dxb - dxa) 14.7 0.0 0.0 14.7 0.0 0.0 0.0 14.7
Spread

dxa 0.0 0.0 0.6 0.0 1.3 1.6 19 0.0
dxb 0.0 0.6 1.3 1.3 16 1.9 1.8 1.9
(dxb - dxa) 0.0 0.6 0.6 1.3 0.3 0.3 0.0 1.9
| Totai of (dxb-dxa) at collapse 602.2 87.7 876 7775 86.0 86.2 -36.5 506.4|
Y-AXIS DEFLECTIONS

Deflections from the “elastic” frame

dya 0.0 0.7 2627 0.0 1.9 2514 07 0.0
dyb 0.7 262.7 1.9 1.9 251.4 0.7 0.7 0.7
(dyb - dya) 0.7 2620 -26038 19 2495 -250.7 0.0 0.7
Defiections from the "plastic” frame

Mid-span drop from gravity loads

dya 0.0 0.0 577.0 0.0 0.0 577.0 0.0 0.0
dyb 0.0 577.0 0.0 0.0 577.0 0.0 0.0 0.0
(dyb - dya) 0.0 577.0 -577.0 0.0 577.0 -577.0 0.0 0.0
Mid-span drop from horizontal loads

dya 0.0 0.0 6.1 0.0 0.0 3.2 0.0 0.0
dyb 0.0 6.1 0.0 0.0 3.2 0.0 0.0 0.0
(dyb - dya) 0.0 6.1 -6.1 0.0 3.2 -3.2 0.0 0.0
{Total of (dyb-dya) at collapse 0.7 8450 -843.8 1.8  829.6 -830.8 0.0 0.7]
SHORTENING

psi (angle from X axis) 390.0 6.0 -6.0 90.0 6.0 -6.0 90.0 90.0
[(dxb - dxa) at collapse]*Sin(psi) 602.2 9.2 -9.2 777.5 9.0 -9.0 -36.5 506.4
[(dyb - dya) at collapse]*Cos(psi) 0.0 8404 -839.1 0.0 8250 -8263 0.0 0.0
phi * s at collapse 602.2 8495 -848.3 777.5 834.0 -8353 -36.5 506.4
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 2.031 2.031 1.740
[Shortening = phi*s*d(phi) {modulus) 602.2 849.5 7489 895.0 960.1 1696.7 74.2  881.3]
AXIAL FORCES

Pc for columns and rafters at ULS 1271 529 55.1 287.4 552 53.2 127.7 127.7
Total midspan drop 8457 8457 831.5 831.5

Midspan height 11577 11577 11577 11577

Increase rafter mispan axial by {1/(1-drop/height) - 1} 0.079  0.079 0.077  0.077

Midspan axial 46.0 48.2 48.3 46.3

Increase in rafter axial 3.8 38 37 38

Design axial 1271 56.5 58.9 287.4 58.9 56.8 127.7 127.7
[Incremental energy = Pc*phi*s*d(phi) 76.5 48.0 441 257.2 56.5 96.3 9.5 112.5] Sum= 701
WORK DONE IN ROTATING HINGES

Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd
MprA 0.0 0.0 404.0 0.0 0.0 404.0 454.0 0.0
MprB 0.0 4040 4040 404.0 4040 0.0 0.0 4540
MprA + MprB 0.0 404.0 808.0 404.0 404.0 404.0 454.0 454.0
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 2.031 2.031 1.740
[Mpr*d{phi) 0.0 4040 7133 4650 4650 8207 9222  790.1] Sum= 4580
Factor on lambda_p 0.847

lambda_p from first-order analysis 1.122

lambda_M 0.950
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2.6 Load factor at failure, A,

P, gsd¢p = 701 ¢

%M, dp = 4580 ¢
2(P2¢sd¢)]J

Al A =1 | =t

e [ [E(Mprd@

= (0.847

_( 701 ¢)
4580 ¢

Av =0.847 X A, = 0.847 X 1.122 = 0.950

Auw < 1.0, so the frame has failed the check for in-plane stability.

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The “hand” method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that 4, were closer to A,.

A22
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1.  INPUT FROM FIRST-ORDER ANALYSIS
1.1 General Arrangement
Miss Frame
3000 = 1 OOfSO = 3000 3000 = 1500 i150 3000
= i ] : =
ooy pre== 5o 6.0° =]
Nommallv‘pmnsd o000 # oo Nominanylpmned
Span 1 Span 2
Hit Frame

15000

15000

15000 15000

SOOL
—_—

9400

@
>
<«
~

%
N
x
&
w
<«

Nominally pinned

30000

254 x 254 x 73 UC

Nominally pinned

30000

457x191x74 UB

Nominally pinned

Angle of rafters:

Spans = 30 m

Developed length of rafter

Height of column from base to Neutral Axis of rafter

Span 1

30
s 6°

30.165 m

Span 2

10.0 m

—»{

173




41 Rev A

The Steel 7/ 7 |7op No: CDS139 Page 2 of
Construction Job Title  BS 5950 Portal

Institute -
Subject  Second-order Worked Example:

Silwood Park, Ascot, Berks SL5 7QN Two-span Portal with Hit/Miss Internal Columns.

Telephone: (01344) 623345

Fax: (01344) 622944 client  DETR Made by CMK |pate May 2001
CALCULATION SHEET Checked by WIS Date  July 2001
1.2 Loading

Miss Frame

Hit Frame

NHF NHF NHF

Loading

Dead = (0.100 x 6.000 x 1.4 = 0.840 kN/m along slope

Service = 0.150 X 6.000 x 1.4 = 1.260 kN/m on plan

Imposed = 0.600 X 6.000 x 1.6 = 5.760kN/m on plan

Self Weight = 80 x 1072 x 1.000 x 1.4 = 1.120 kN/m along slope
Valley beam factored load = 300 kN
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MISS FRAME
1.3 INPUT FROM FIRST-ORDER ANALYSIS
1.3.1 General Arrangement

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism for the Miss Frame

10.99
\‘/>\a C F
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Find Node Locations

Pt A - (0.0, 0.0) = (0.0, 0.0)

PtB - (0.0, 10.0) = (0.0, 10.0)

Pt C - (15.0, {10.0 + 15.0Tan6})

Pt D - (30.0, 10.0)

Pt E - (30.0, 10.0)

Pt F - ({30.0+15.0}, {10.0 + 15.0Tan6})

Pt G - (60.0, 10.0)

PtH - (60.0, 0.0)

Pta - (10.911Cos6, {10.0 + 10.911Sin6})

Ptc - ({30.04+2.993Cos6}, {10.0 + 2.993Sin6})
Ptd - (60.0, 9.400)

Hinge Rotations

Taking the instantaneous rotation about A as €

6,16, = K X) 56

(Xe X))
1 Yd B Yc

y =tan | ——| = 1.935

Xd B Xc

dY Cos + dX_ Sin
6,16, - D LD * B ID o

cd 6,
dXd

ﬁdH/ﬁA = Y— = 1.229

d-Hy “A

= (15.0, 11.577)
= (30.0, 10.0)

= (30.0, 10.0)

= (45.0, 11.577)
= (60.0, 10.0)

= (60.0, 0.0)

= (10.851, 11.141)
= (32.977, 10.313)

= (60.0, 9.400)
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1.4 Axial forces at ULS from first-order analysis

Span 1

LH column: at base = 132.0 kN, at haunch =122.4 kN
LH rafter: at column = 60.0 kN, at apex = 46.2 kN
RH rafter: atcolumn = 62.1 kN, at apex = 48.4 kN
Span 2

LH rafter: at column = 62.1 kN, at apex = 48.3 kN
RH rafter: at column = 60.1 kN, at apex = 46.3 kN
RH column: at base = 132.5 kN, at haunch = 122.9 kN

Notional Horizontal Forces

Span 1:

External Column

0.5% x 127.2 = 0.636 kN
Span 2:

External Column

0.5% x 127.7 = 0.638 kN

0.7 kN O kN 0.7 kN

1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1:2000 Annex 1.2. These
may be taken from section tables.

Cl24.24
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M, = p,S«
For the axial forces in this frame under this load case
M, rafters = 404 kNm
M, external columns = 454 kNm

1.6 Load factor at formation of the first hinge, A4,

A, = 0.960 (from the frame analysis output)

1.7 Plastic collapse factor, A,

A, = 1.12 (from the frame analysis output)

1.8 Member inertias, I,
External columns: 457x191 x 74 UB: I, = 33320 cm*

Rafters: 457%191 x 67 UB: I, = 29380 cm*

Il

1.9 Deflections of frame at A, (formation of the first hinge)

0 =-357mm Oyp = 0.6 mm
6, =-11.3mm O, = 236.7 mm
O0p = 13.1 mm Op = 3.4 mm
O = 36.4mm Op = 2254 mm
O = 59.6 mm O = 0.6 mm

2. SECOND-ORDER ANALYSIS

2.1 Axial forces in members

Span 1
LH col: take mid-height Py, ¢ = (132.0 + 122.4)/2
LH rafter: take mid-length Py = (60.0 + 46.2)/2

RH rafter: take mid-length Py, (62.1 + 48.4)/2

It

127.2 kN

53.1 kN

55.3 kN
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Span 2

LH rafter: take mid-length Py, = (62.1 + 48.3)/2 = 55.2kN

RH rafter: take mid-length P = (60.1 + 46.3)/2 = 53.2kN

RH col: take mid-height Py ¢ = (132.5 +122.9)/2 =127.7kN

2.2 Bending Deflections of the “elastic” frame A3.2

2.2.1 Stiffness reduction factors allowing fore P.J effects

Columns
The stiffness of each external column differs from the stiffness of the internal
column. Therefore the reduction in frame stiffness is calculated from the sum

of the ULS loads in the columns and the sum of the critical loads of the
columns.

Sum of columns Py, 2Py = 127.2 + 127.7 = 2549 kN
External columns: I, = 33320 cm*, h = 10000 mm, « = 1.7
P, = TEl/(ch)® = 12x205000 % 33320 x 10*/(1.7 X 10000)* = 2333 kN

Sum of columns P, ZP ., = 2333 + 2333 = 4666 kN

(1 - 2Py /ZP,) = (1 - 254.9/4666) = 0.945
1/(1 - Py /ZP,) = 1.058

Rafters

Span 1:

Average P, ¢ = (53.1 + 55.3)/2 = 54.2kN
I =129380cm*, L = 30165mm, a = 1.0

= mEl/(al)® = w?x205000x 29380 % 10%/(1.0x30165)* = 653 kN

iy~
I

(1-Py,s IP,) = (1 -54.2/653) = (1-0.083) = 0.917
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Span 2:

Average P, = (55.2 + 53.2)/2 = 542 kN

I, =29380cm*, L = 30165mm, a = 1.0

P, = mEl/(al)? = 1*%205000%29380 % 10*/(1.0x30165)* = 653 kN
(1-Py,s /P = (1 - 54.2/653) = (1 - 0.083) = 0.917

2.2.2 Second order magnification factors

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

K- H_ 1 D.2.5
Sh?2 h3 )
ff,c

6
+
3El ., 3EL

Sub Frame 1 (Elastic)

2 2
Sh* _ 30165 x (10000) ~ 0.01820
3EL, . 3x205000x26944 % 10*
3 3
" = 10000 = 0.00516
3EL;.  3x205000%31503 % 10*
Ky = ! = 42.8 N/mm
0.01820 + 0.00516
Sub Frame 2 (Elastic)
2 2
Sh> 30165 X (10000)  0.01801
3ELy . 3%205000 X 26942 x 10°
3 3
h = 10000 = 0.00516
3EL,.  3%205000x%31505x%10*
1
Koy = = 42.8 N/mm

0.01821 + 0.00516
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Nominal Base fixity

v . H_ 1

) K E
-+
2EI  3EL,

External Column

= 1 = 23.95 N/mm

Kb ext
(0.0366 + 0.00516)

Total Frame Stiffness

ZK = Ksubl + Kbexl + Ksub2+ Kbim + Kbext

I

XK 42.8 + 23.95 + 42.8 +23.95 = 133.5 N/mm

Second -order notional sway deflection

__H o 1274X1000 _ g

23K, 133.5

Critical Buckling Ratio

B 10000

A
el 2008,  200%9.55

Sway mode magnification

A -1

crl

/Zcrl
= 1.24

2.2.3 Deflection calculations
Sway Deflections

The first-order sway deflection X, is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of A).

D.4

A25

A34

181




The Steel Job No:

CDS139 Page 10 of 41 Rev A

Construction
Institute

Job Title

S

BS 5950 Portal

Subject

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345

Second-order Worked Example:
Two-span Portal with Hit/Miss Internal Columns.

Fax: (01344) 622944 Client

CALCULATION SHEET

DETR CMK

Made by Date  May 2001

Checked by WIS

Date

July 2001

K

H _ 1
¢ Sh?

- -
3EL,

3EL

+

Sub Frame 1 (Elastic)

Sh*

3EL,

30165 x (10000)?
3% 205000 x 29380 x 10*

10000°
3%205000x 33320 x 10*

h3
3EI.

1
0.01669 + 0.00488

KSubl -

46.4 N/mm

Sub Frame 2 (Elastic)
As Sub frame 1

1
0.01669 + 0.00488

KSub2 -

46.4 N/mm

Total Frame Stiffness

2K = Ksubl + Ksub2

2K 46.4 + 46.4 = 92.7 N/mm

First-order sway deflection

A H

K,

0.960x1.275x 1000
92.7

Is

cr2

-1

= 1.09

cr2

= 0.01669

= (0.00488

= 13.20 mm

D.2.3

A34
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Values of 6X, and Y, are taken from first order analysis (See Sheet 7).

O = (-35.7-13.19) x 1.09 + 13.19 x 1.24 = -37.0 mm
0p =0.6x109 =0.7mm

Oc = (-11.3-13.19) x 1.09 + 13.19 x 1.24 = -10.4 mm
O, = 236.7 x1.09 = 258.1 mm

Op = (13.1 - 13.19) X 1.09 + 13.19 x 1.24 = 16.2 mm
Op = 3.4 x1.09 = 3.7 mm

O = (383 -13.19) X 1.09 + 13.19 x 1.24 = 41.6 mm
Op = 2254 X 1.09 = 245.8 mm

0 = (59.6 - 13.19) X 1.09 + 13.19 x 1.24 = 66.9 mm
66 =06 x1.09 =0.7mm

Interpolation of deflections at hinge ‘c’

Across span ratio &« = = = —— = 0.099

Ratio of hinge deflection to maximum deflection

YE _32(a" - 24 + a) = 0.312 E.1
B
Oy = 41.6 mm Oyp = 245.8 mm
Oyp = 16.2 mm Oyp = 3.7 mm
al E.2

5XC = 5XD + ﬁ (5XF - 5XD) = 19.5 mms

B ya B E.1
Oy, = Oyp * 78 (5YF - 5YD) = 79.1 mm
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2.3 Bending deflections of the plastic frame

2.3.1 Stiffness reduction factors to allow for P.5 effects A.42
Columns: as the “elastic” frame

LH Column: (1 - P/P,) = 0.945

Rafters: as the “elastic” frame because that used a = 1.0

Span 1: (1-P/P,) = 0917

Span 2: (1-P/P,) = 0.917

2.3.2 Second Order Magnification Factor

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of
the rafter and column pairs between plastic hinges and the base stiffness of
each column.

Sway stiffness from column and rafter stiffness.

1

K, =
Sh? h3
* D.3.5
3Elcff,R 3Elcff,c
I wp = Iy 1-PIP) = 26944 cm* Ad42

Ig4. =1 (1-P/P,) = 31503 cm*

Sub Frame 1 (Plastic)

2 2
Sh? 30165 X (10000) - 0.01820
3Ely,  3Xx205000%26944 x 10*
3 3
ho 10000 = 0.00516
3ElLg.  3x%205000%31503 % 10*
K1 = ! - 42.8 N/mm
0.01820 + 0.00516
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Nominal Base fixity D.4

6 (sp3 p?
— 4
2Bl 3EL,

External Column

= 1 = 23.95 N/mm

Kb ext
(0.0366 + 0.00516)

Total Frame Stiffness

XK, =Ky, + Ky + Ky oxe

XK, = 42.8 + 23.95 + 23,95 = 90.7 N/mm
Second-order notional sway deflection for the plastic frame

H 1.274 x 1000

o, = = = 14.05 mm
P XK, 90.7
Critical Buckling Ratio D.3.5
h 10000

A = - = 3.56
? 2005, 200X 14.05

Magnification Factor

A -1

crp

A
s ] = 1.391

2.3.3 Deflections of the “plastic” frame from gravity loads

Loads
The loads applied to the “plastic” frame = (4, - 4,)(loads at ULS)

(A, - 4) =(1.12-096) =0.16

P
Slope of rafters @, = o, =a = 6°, giving Cos ¢ = 0.9945

Assuming both service load and imposed load are specified “on plan”,
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at ULS, w = 1.26 + 5.76 = 7.02 kN/m

v.plan
giving a transverse load on the “plastic frame”

= (4, - 4)(W, y, at ULS)Cos’

= 0.16x7.02(0.9945)* = 1.11 kN/m
Assuming both dead load and self-weight are values “along the slope”,

at ULS, w =0.84 + 1.12 = 1.96 kN/m

v.slope
giving a transverse load on the “plastic frame”

= (4, = AW, gope at ULS)Cosa

= 0.16X1.96x0.9945 = 0.31 kN/m
Summing loads from components “on plan” and “along the slope”,
wp, = 1.11 + 0.31 = 1.42kN/m

Sway

This arises due to the rotation of the column without an adjacent hinge.

w, S?
First-order end slope of the rafter as a simply supported beam, Oy = 2
24 EI,
Wp s3 /lcrp
Second-order end slope of the rafter, G, = 24 EI, /Zcrp T
E = 205000 N/mm?
I, = 29380 cm*

3
6. - 1.42 x 30165 x 1.391 = 0.03472 radians

24 % 205000 x 29380 x 10°

Horizontal deflection of Point B, C, D = k6,
= 10000 X 0.03472

= 347.2 mm

A4S
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Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:
4
§b2 ) 5 WPS /lcrp
3% El |4 -1
4
6. - 2 x 1.42 % 30165 % 1.391 = 354.3 mm

2384 205000 x 29380 x 10*

o)
Ges = Oupen = 00:2a ) 03.;‘;;135 - 3362 mm
Span 2: as Span 1
Hinge Drop From interpolation
5Y - % Bper = 0312 X 356.2 = 111.0 mm
Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:
Full span 00 = 0y, (Sing, + Sine,) = &y, (2Sin 6°)

= 354.3 (2 x 0.1045) = 74.1 mm
Half span 0y = 0y Sin @, = 354.3 X 0.1045 = 37.0 mm

Span 2: as Span 1
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Spread at hinge from Interpolation

_ ya ) .
OX = Og)rcassouns * 5 Ospreasspmz = 14-1 + (0.312 X 74.1) = 97.1 mm

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, 0122 = 0.03472 radians (Sheet 14)

Off-set of the hinge below the rafter, e = 10000 - 9400 = 600 mm

Horizontal deflection of Point M = eby

600 x 0.03472

20.8 mm
2.3.4 Deflections of the “plastic” frame from horizontal loads

Loads

The unfactored loads applied to the “elastic frame” included the horizontal
loads and were in proportion to the ULS loads, so the loads applied to the
“plastic” frame = (4, - 4,)(loads at ULS)

A - 4) =(1.12-096) =0.16

P

Slope of rafters ¢, = @, =a = 6°, giving Cos @ = 0.9945

Sway
Total of column forces = 254.9 kN (Sheet 7)
0.5% X of total of column forces = 0.005%254.9 = 1.27 kN (Sheet 5)

Additional horizontal load on plastic frame

H =016 x 127 =0204kN =204 N
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For a multi-span frame, the sway deflection is calculated from the sum of the
stiffnesses K for each of the spans:

K - 1 y 1
Sh2 B3 ]y
+ crp
3EI,  3EI T
crp
K, - 1 - 1 - 458
T 0.0167 + 0.0052
.
3EI,  3EL

Total Frame Stiffness

XK=K

XK, = 45.8 N/mm

Second-order least sway deflection of the column top

A - H _ 0.204X1000 % 1.391 = 6.2 mm

3K, 45.8

Mid-span drop

Second order sagging deflection of a straight rafter:

ML?

r

6sm2
161,

A

crp

where M = X H, h,
/Zcrp -1

H, is the proportion of the horizontal force carried by each sub frame calculated
as a proportion of the stiffness K.

Sub frame 1:
Drop in the apex of rafter span 1 due to horizontal load.

2
_ 0.204 x 1000 X 10000 (30165) % 1.391 = 2.7

16 X 205000 x 29380x10*

sm2

A4.6

A4.6
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Spread
Span 1:

i

Full span spread = 4, (Sing¢, + Sina,) 2.7 (Sin 6° + Sin 6°)

0.6 mm

Il
I

2.7 (0.1045 + 0.1045)
Half span spread = 4, (Sing)) = 2.7 (Sin 6°)

= 2.7 (0.1045) = 0.3 mm

2.4 Axial forces for the energy calculation

The total of the axial loads in the columns is not affected by second-order
effects because of vertical equilibrium, so P, = P, which is taken as the
mid-height value calculated in 2.2 above.

Span 1:
LH col: take mid-height P, = (132.0 + 122.4)/2 = 127.2 kN
Span 2:
RH col: take mid-height P, = (132.5 + 122.9)/2 = 127.7 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.
Span 1:

Total Mid-span drop = 617.0 mm

Increase in P, = {1/[1-(4, /hp)]-1} = {1/[1-(617.0 /11577)] - 1}
= 0.056
LH rafter: take mid-length P, = (60.0 + 46.2)/2 = 53.1 kN
Mid-span axial = 46.2, giving P4 increase = 0.056x46.2 = 2.6 kN

P, =53.1 +2.6 =557kN

A5
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RH rafter: take mid-length P, = (62.1 + 48.4)/2 = 55.3 kN
Mid-span axial = 48.4, giving P4 increase = 0.056x48.4 = 2.7 kN
P, =553+ 27 =58.0 kN
Span 2:
Total Mid-span drop = 602.0 mm
Increase in P, = {1/[1-(6, /h)]-1} = {1/[1-(602.0 /11577)] - 1} = 0.055
LH rafter: take mid-length P, = (62.1 + 48.3)/2 = 55.2 kN
Mid-span axial = 48.3, giving P4 increase = 0.055x48.3 = 2.6 kN
P, =1552+26 = 57.8 kN
RH rafter: take mid-length P, = (60.1 + 46.3)/2 = 53.2 kN
Mid-span axial = 46.3, giving P4 increase = 0.055x46.3 = 2.5 kN
P, =532+25 = 55.7 kN
2.5 Second-order Energy Summation A.6
The energy summation is required to calculate A,, following the methods in
A22
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Element for evaluation of Pc*phi*s*d(phi) AB BC CD ED Dc cG dG Hd
X-AXIS DEFLECTIONS E=D

Deflections from the “elastic” frame

dxa 0.0 -37.0 -10.4 16.2 19.5 66.9 0.0
dxb -37.0 -10.4 16.2 19.5 66.9 66.9 66.9
(dxb - dxa) -37.0 26.6 26.6 33 474 0.0 66.9
Deflections from the "plastic” frame

From gravity loads

Sway of top of elastic column

dxa 0.0 347.2 347.2 347.2 347.2 347.2 0.0
dxb 347.2 347.2 347.2 347.2 347.2 347.2 347.2
(dxb - dxa) 347.2 0.0 0.0 0.0 0.0 0.0 347.2
Spread

dxa 0.0 0.0 37.0 741 97.1 148.1 0.0
dxb 0.0 37.0 741 97.1 148.1 148.1 148.1
(dxb - dxa) 0.0 37.0 37.0 231 51.0 0.0 148.1
Column hinge horizontal displacement

dxa 0.0 0.0 0.0 0.0 0.0 20.8 0.0
dxb 0.0 0.0 0.0 0.0 0.0 0.0 20.8
(dxb - dxa) 0.0 0.0 0.0 0.0 0.0 -20.8 20.8
From horizontal loads

Sway

dxa 0.0 6.2 6.2 6.2 6.2 6.2 0.0
dxb 6.2 6.2 6.2 6.2 6.2 6.2 6.2
(dxb - dxa) 6.2 0.0 0.0 0.0 0.0 0.0 6.2
Spread

dxa 0.0 0.0 0.3 0.6 0.6 0.6 0.0
dxb 0.0 0.3 0.6 0.6 0.6 0.6 0.6
(dxb - dxa) 0.0 0.3 0.3 0.0 0.0 0.0 0.6
[Total of (dxb - dxa) at collapse 316.4 63.9 63.9 26.4 98.4 -20.8 589.8]
Y-AXIS DEFLECTIONS

Deflections from the "elastic” frame

dya 0.0 0.7 258.1 37 79.1 0.7 0.0
dyb 07 258.1 37 791 0.7 0.7 07
(dyb - dya) 0.7 257.5 -2544 75.4 -78.5 0.0 0.7
Deflections from the "plastic” frame

Mid-span drop from gravity loads

dya 0.0 0.0 356.2 0.0 111.0 0.0 0.0
dyb 0.0 356.2 0.0 111.0 0.0 0.0 0.0
(dyb - dya) 0.0 356.2  -356.2 1110 -111.0 0.0 0.0
Deflections from the "plastic"” frame

Mid-span drop from horizontal loads

dya 0.0 0.0 2.7 0.0 0.0 0.0 0.0
dyb 0.0 27 0.0 0.0 0.0 0.0 0.0
(dyb - dya) 0.0 2.7 -2.7 0.0 0.0 0.0 0.0
[Total of {dyb - dya) at collapse 0.7 616.4  -613.3 186.4  -189.5 0.0 0.7]
psi (angle from X axis) 90.0 6.0 -6.0 6.0 -6.0 90.0 90.0
[(dxb - dxa) at collapse]*Sin{psi) 316.4 6.7 6.7 2.8 -10.3 -208  589.8
[(dyb - dya) at collapse]*Cos(psi) 00 68130 -609.9 1854  -188.4 0.0 0.0
phi * s at collapse 316.4 619.7 -616.6 188.1 -198.7 -20.8 589.8
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.567 0.567 0.077 0.077 1.229
[Shortening = phi*s*d{phi) (modulus) 316.4 619.7 349.4 106.6 15.3 1.6 724.9]
AXIAL FORCES

Pc for columns and rafters at ULS 127.2 53.1 55.3 55.2 53.2 127.7 127.7
Total midspan drop 617.0 617.0 602.0 602.0

Midspan height 11577 11577 11577 11577

Increase rafter mispan axial by {1/(1-drop/height) - 1} 0.056 0.056 0.055 0.055

Midspan axial 46.2 484 48.3 46.3

Increase in rafter axial 2.6 27 2.6 2.5

Design axial 127.2 557 58.0 57.8 55.7 127.7 127.7
[Incremental energy = Pc*phi*s*d(phi) 40.2 34.5 20.3 6.2 0.9 0.2 92.6] Sum= 195
WORK DONE ON ROTATING HINGES

Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd
MprA 0.0 0.0 404.0 0.0 404.0 454.0 00
MprB 0.0 404.0 404.0 404.0 0.0 0.0 4540
MprA + MprB 0.0 404.0 808.0 404.0 404.0 454.0 454.0
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.567 0.567 0.077 0.077 1.229
[Mpr*d(phi) : 0.0 404.0 457.9 228.9 31.0 34.9 558.0] Sum= 1715
Factor on lambda_p 0.886

lambda_p from first-order analysis 1.120

lambda_M 0.993
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2.6 Load factor at failure, A, A.6

TP, gsdp = 195 ¢

TM,dp = 1715 ¢

o (P, ¢sdp)
B T (M, dg)

[ 195 8]
Ayl A, = [1 (1715 ¢” = 0.886

Ay = 0.886 x 4, = 0.886 x 1.120 = 0.993

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The “hand” method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that 4, were closer to A,
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HIT FRAME

As geometry of the hit frame is similar to the two-span portal in the previous
worked example some of the checks are not explicitly shown in this example.

1.3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism for Hit Frame
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Find Node Locations

Pt A - (0.0, 0.0) = (0.0, 0.0)

PtB - (0.0, 10.0) = (0.0, 10.0)

Pt C - (15.0, {10.0 + 15.0Tan6}) = (15.0, 11.577)

Pt D -~ (30.0, 10.0) = (30.0, 10.0)

Pt E - (30.0, 0.0) = (30.0, 0.0)

PtF - ({30.0+15.0}, {10.0 + 15.0Tan6}) = (45.0, 11.577)

Pt G - (60.0, 10.0) = (60.0, 10.0)

Pt H - (60.0, 0.0) = (60.0, 0.0)

Pta - (10.911Cos6, {10.0 + 10.911Sin6}) = (10.851, 11.141)

Ptb - ({30.0-2.993Cos6}, {10.0 + 2.993Sin6}) = (27.023, 10.313)
Ptc - ({60.0-13.551Co0s6}, {10.0 + 13.551Sin6})= (46.523, 11.416)

Ptd - (60.0, 9.400) = (60.0, 9.400)

Find Centre of Rotation I,

X, - X .
Y, - e~ Xa L 300-00 o
( dX] ) ( dX] (0.974) - (-0.289)
ar),. \adr].
dx
X, =X, +||==| x ¥,|=0.0+ (097397 x 23.760) = 23.142m
ay) .

Pt1 - (23.142, 23.759)
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Find Centre of Rotation I,
X, - X -
v, - . _ 600 =300 50000
(@ ) (_cp_() (1.447) - (0.0)
dy) .. dY) ue

[7).4
X, = X + (_) X Y,| = 30.0 + (1.447 x 20.728) = 60.0 m
Ec

ay
Note that Xlz- = 60.0 is obvious without calculation!

Pt1 - (20.728, 60.0)
Hinge Rotations

Taking the instantaneous rotation about A as &

Y
6, - 0x —2 _ -0 x 1141 . o8s30
Y, - Y, 23.759 - 11.141
Y, - Y _
g, - 6, x 10 _ggg3g x 2279 “ 10313 45
Y, 10.313
O, - 6 x —< - 11510 x —1-141
Y, - Y. 20.728 - 11.141
= 1.151 8 x 1.162 = 1.411 8
Y, -Y _
6, - 6, x 2 4 _ 14110 x 20.728 - 9.400
f 9.400
=1.411 6 x 1.205 = 1.701 @
1.4 Axial forces at ULS from first-order analysis
Span 1:
LH column: at base = 131.7 kN, at haunch = 122.0 kN
LH rafter: at column = 59.1 kN, at apex = 45.4 kN
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RH rafter: at column = 61.3 kN, at apex = 47.6 kN
RH column: at base = 593.3 kN, at haunch = 583.9 kN
Span 2:
LH rafter: at column = 62.0 kN, at apex = 48.2 kN
RH rafter: atcolumn = 60.1 kN, at apex = 46.4 kN
RH column: at base = 133.1 kN, at haunch = 123.5 kN
Notional Horizontal Forces
Span 1:
External Column
0.5% x Axial Force in Column = 0.005 X 126.9 = 0.635
Internal Column
0.5% x Axial Force in Column = 0.005 X 588.6 = 2.943
Span 2
External Column
0.5% x Axial Force in Column = 0.005 x 128.3 = 0.642
—> —
0.7 kN 1.6 kN |1.5 kN 0.7 kN

1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1:2000, Annex 1.2. These
may be taken from section tables.

er = py er <12 py ZX

For the axial forces in this frame under this load case

Cl4.2.5
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M, rafters = 404 kNm

M, external columns = 454 kNm

1.6 Load factor at formation of the first hinge, A,
; = 0.945 (From the frame analysis output)

1.7 Plastic collapse factor, A,
Jy = 1.117

(From the frame analysis)

1.8 Member inertias, |,

External columns: 457x191 x 74 UB: I, = 33320 cm*
Rafters: 457x191 x 67 UB: I, = 29380 cm*
Internal column: 254 %254 x 73 UC: I, = 11410 cm*

1.9 Deflections of frame at A, (formation of the first hinge)
05 = -28.9 mm O =(.6 mm
Oc = 4.8mm O,c =233.5 mm
Op = 19.0 mm O,p 2.9 mm
O = 41.7mm O, =223.1 mm
6 = 64.7mm o =0.6 mm
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2. SECOND-ORDER ANALYSIS
2.1 Axial forces in members
Use the average axial forces in the members, from first order analysis
Span 1
LH col: take mid-height P, = (131.7 + 122.0)/2 = 126.9 kN
LH rafter: take mid-length Py = (59.1 + 45.4)/2 = 52.3 kN
RH rafter: take mid-length P, ¢ = (61.3 + 47.6)/2 =54.5 kN
RH col: take mid-height Py = (583.9 +593.3)/2 =588.6 kN
Span 2
LH rafter: take mid-length P, ¢ = (62.0 + 48.2)/2 = 55.1 kN
RH rafter: take mid-length Py = (60.1 + 46.4)/2 = 53.3 kN
RH col: take mid-height P, ¢ = (133.1 +123.5)/2 =128.3 kN
2.2 Bending deflections of the “elastic” frame
2.2.1 Stiffness reduction factors allowing for P.5 effects A.3.2
Columns
Sum of columns Py, 2Py = 126.9 + 588.6 + 128.3 = 843.8 kN
External columns: 7, = 33320 cm*, # = 10000mm, a = 1.7
P, = 2333 kN
Internal column: I, = 11410 cm®, h = 10000mm, « = 1.7
P, =799 kN
Sum of columns P, ZP , = 2333 + 799 + 2333 = 5464 kN
(1 - ZPy 'ZP,) = 0.846
1/(1 - ZPs /ZP,) = 1.18
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Rafters
Span 1:

Average P, = (52.3 + 54.5)/2 = 53.4 kN
I, =29380 cm*, L = 30165mm, a = 1.0
P, = mwEll(el)* = 653 kN

(1-Py,s /P,) = 0918

Span 2:

Average Py = (55.1 + 53.3)/2 = 54.2 kN

I, =29380cm*, L = 30165mm, &« = 1.0
P, = mEl/(al)* = 653 kN

(1-Pys /P,y = 0917

2.2.2 Second order magnification factors A.3.3

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

_H 1
k=3 Y h3 D.2.5
+
3EIeff.R 3Eleff‘c
Sub Frame 1 (Elastic)
2 2
Sh _ 30165 % (10000) - 0.01818

3EL;x  3%205000%26981x10*

3 3
h = 10000 = 0.00516

3EL; .  3x205000x31508x% 10*

= 1 = 42.8 N/mm

K
Sl = 0.01818 + 0.00516
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Sub Frame 2 (Elastic)
2 2
Sh _ 30165 % (10000) - 0.01818
3El ..  3x205000%26981 x 10*
3 3
h™ 10000 - 0.00516
3El,.  3x205000x%31508 x 10*
K = 1 = 8 N/mm
2 0.01818 + 0.00516
Nominal Base fixity D.4
6 [ 5h3 E ]
+
2EI 3EI,
External Column
1
booxt = = 24.0 N/mm
(0.0366 + 0.00516)
Total Frame Stiffness
ZK = Ksubl + Kbext + Ksub2+ Kbim + Kbext
2K =428 +24.0 + 42.8 +24.0 = 133.6 N/mm
o - H _ 4.219X1000 _ 31.6 mm
2K, 133.6
i - h - 10000 _ 1.6
2000 , 200 x 31.6
Sway mode magnification
/?'crl
=2.7
/?'crl -1
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2.2.3 Deflection calculations
Sway deflections A3.4
The first order sway deflection 0X,; is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of A).
H 1
K = i o I D.3.3
+
3EI, 3EI
Sub Frame 1 (Elastic)
2 2
Sh” 30165 % (10000) _ 0.01669
3EL, 3 x205000 % 29380 x 10*
3 3
L 10000 - 0.00488
3EI,  3x205000%33320x10*
Ky = L = 46.4 N/mm
0.01669 + 0.00488
Sub Frame 2 (Elastic)
As Sub frame 1
Koo = L = 46.4 N/mm
0.01669 + 0.00488
Total Frame Stiffness
ZK =Ksubl+Ksub2
YK =464 + 46.4 = 92.7 N/mm
First-order sway deflection
AH D.3.3
- i1 0.950%4.219X1000 _ 4393 mm
ZK, 92.7
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1 A.3.4
cr2 crl
oX, = (6X,-6X,) X + 0X, X —
2 1 /Zcrl -1
A
oY, = 6Y, X o2
)”crz -1
Values of X, and &Y, are taken from first order analysis (See Sheet 7).
05 = (-28.9 - 43.23) x 1.183 + 43.23 X 2.7 = 32.1 mm
0p =06 Xx1.183 =0.7mm
Oc = (4.8-43.23) X 1.183 +43.23 x 2.7 =71.9mm
O, = 233.5 x1.183 = 276.1 mm
Op = (19.0 - 43.23) x 1.183 + 43.23 X 2.7 = 88.7 mm
6p =29 x1.183 = 3.4 mm
O = (41.7 - 43.23) x 1.183 + 43.23 x 2.7 = 115.6 mm
Oy =223.1 X 1.183 = 263.8 mm
0 = (64.7 - 43.23) X 1.183 + 43.23 X 2.7 = 142.8 mm
6 = 0.6 x1.183 = 0.7 mm
2.3 Bending deflections of the “plastic” frame A4
2.3.1 Stiffness reduction factors to allow for P.0 effects A.4.2

Columns: as the “elastic” frame

LH Column: 1 - Py /P, = 0.946

Central Column: (1 - Py /P, = 0.263

Rafters: as the “elastic” frame because that used o = 1.0
Span 1: (1-Pys /P, = 0.917

Span 2: (1-Pys /P,) = 0.917
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2.3.2 Second Order Magnification Factor A.4.3

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of
the rafter and column pairs between plastic hinges and the base stiffness of
each column.

Sway stiffness from column and rafter stiffness.

1

K. -

2 sk . D.3.5
3E] 3E]

eff. R eff.c

Sub Frame 1 (Plastic)

2 2
Sh?  _ 30165 X (10000) _ 0.01818
3EL..  3%205000x26981x 10*
3 3
i = 10000 = 0.00516
3EL,.  3x205000x31508 x10*
Ky = ! = 42.84 N/mm
0.01818 + 0.00516
Sub Frame 2 (Plastic)
2 2
Sh?  _ 30165 x (10000)  0.01818
3EL,.  3x%205000%26981x10*
3 3
h = 10000 = 0.05416
3EL,.  3%205000x3003x10*
Ksub2 = ! = 13.82 N/mm
0.01818 + 0.05416
Nominal Base fixity D.4
K, - H _ 1
Y 5h®  h3
—_— +
'2E1 3Eleff

204




Page 33 of

41

Rev A

The Steel 0 Job No: CDS139
Construction Job Title  BS 5950 Portal
Institute

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344} 623345

Subject  Second-order Worked Example:
Two-span Portal with Hit/Miss Internal Columns.

Fax: (01344) 622944 client  DETR Made by CMK |pate May 2001
External Column
K, .. - ! - 23.95 N/mm
(0.0366 + 0.00516)
Internal Column
1
Ky = = 6.2 N/mm
(0.1069 + 0.0542)
Total Frame Stiffness
ZK =K1+ Kpine + Koot Kying + Ky
YK =42.84 + 23.95 + 13.82 +6.2 + 23.95 = 110.8 N/mm
Second-order notional sway deflection for the plastic frame
6 - H _ 4.219x1000 _ 39 8 mm
i 2K, 110.8
Critical Buckling Ratio D.3.5
A_ - h _ 10000 1.31
200 5np 200 x 39.8
Magnification Factor A.4.3
A
TP =4.20
/lcrp -1
2.3.3 Deflections of the “plastic” frame from gravity loads A45

Loads

The loads applied to the “plastic” frame = (4, - 4,)(loads at ULS)
(4, - 4) = (1.117 - 0.95) = 0.167

Slope of rafters @, = @, =a = 6°, giving Cos @ = 0.9945
Assuming both service load and imposed load are specified “on plan

at ULS, w =1.26 + 5.76 = 7.02 kN/m

v.plan

»
B
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giving a transverse load on the “plastic frame”

= (4, = A)(W, pin at ULS)Cos’a

= 0.171x7.02(0.9945)> = 1.16 kN/m
Assuming both dead load and self-weight are values “along the slope”,
at ULS, w, gope= 0.84 + 1.12 = 1.96 kN/m
giving a transverse load on the “plastic frame”

= (4, = AW, gop at ULS)Cos &

= 0.171xX1.96x0.9945 = 0.33 kN/m
Summing loads from components “on plan” and “along the slope”,
wp=1.16 + 0.33 = 1.49 kN/m

A.4.5

Sway
This arises due to the rotation of the column without an adjacent hinge.

w, S3
First-order end slope of the rafter as a simply supported beam, 6, = > 4P El
R

3
WP S crp

A
- 6 =
Second-order end slope of the rafter, &, 24 EI ( /Zcrp N 1]

E = 205000 N/mm?

29380 cm*

~
I

3
0 . 1.49 X 30165 X 4.20 = 0.11834 radians

R 24 x 205000 x 29380 x 10°

Horizontal deflection of Point B, C, D = h6,

10000 x 0.11834

1183.4 mm
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Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:

S, = 5 M s* /lcrp

2384 EI (A, -1

4
8, - = x 1.47 X 30165 X 4.20 = 1115.5 mm
384 205000 x 29380 x 10*
6

o = —r IS 7 mm

P cos «  0.9945
Span 2: as Span 1
Spread A.45

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:
Full span &,y = &, (Sine, + Sina) = &, (2Sin 6°)
= 1115.5 2 x 0.1045) = 233.2 mm
Half span 6,4 = &5, Siney = 1115.5 X 0.1045 = 116.6 mm

Span 2: as Span 1
Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, 6, = 0.11834 radians (Sheet 34)
Off-set of the hinge below the rafter, e = 10000 - 9400 = 600 mm
Horizontal deflection of Point M = ef; = 600 x 0.11834 = 71.0 mm
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2.3.4 Deflections of the “plastic” frame from horizontal loads
Loads

The unfactored loads applied to the “elastic frame” included the horizontal
loads and were in proportion to the ULS loads, so the loads applied to the
“plastic” frame = (4, - 4,)(loads at ULS)

(4, - A4) = (1.117 - 0.950) = 0.167

Slope of rafters &, = a, =& = 6°, giving Cosa = 0.9945

Sway

Total of column forces = 843.8 kN

0.5% X of total of column forces (elastic frame) = 0.005x843.75 = 4.22 kN
Additional horizontal load on plastic frame

H =0.167 X 4.22 X 1000 = 705N

For a multi-span frame, the sway deflection is calculated from the sum of the
stiffnesses K for each of the spans:

KS = 1 X 1
S h? h3 A
+ crp
3EL, 3EI, 1 -1
crp
K., = 44.5
K o = 29.8

Total Frame Stiffness (First Order)

XK, =K g, + K>

YK, =445+ 298 = 74.3 N/mm
Second-order least sway deflection of the column top

A - H _0.705X1000 4 5g - 398 mm

? ZK 74.3

(Sheet 27)

A4.6
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Mid-span drop

Second order sagging deflection of a straight rafter:

A

crp

Ay - 1

ML’

Ouma = 16E1
R

where M = 2 H, h,

H, is the proportion of the horizontal force carried by each sub frame
calculated as a proportion of the stiffness K,.

Sub frame 1:

Drop in the apex of rafter span 1 due to horizontal load.

2
_ 0.425 x 1000 x 10000 (30165 . , 50 _ 16 8 o

16 x 205000 x 26951 x 10*

sm2

Sub frame 2:

Drop in the apex of rafter span 2 due to horizontal load.

2
_ 0.280 X 1000 x 10000 (30165) % 490 = 11.1mm

16 x 205000 x 26951 x 10*

sm2

Spread

Span 1:

Full span spread = J, (Singa, + Sina) = 16.8 (Sin 6° + Sin 6°)
= 16.8 (0.1045 + 0.1045) = 3.5 mm

Half span spread = J, (Sing,) = 16.8 (Sin 6°)
= 16.8 (0.1045) = 1.8 mm

Span 2:

Full span spread = d,,, (Sing;, + Sina,) = 11.1 (Sin 6° + Sin 6°)

= 11.1 (0.1045 + 0.1045) = 1.2 mm
Half-span spread = J, (Sing,) = 11.1(Sin 6°)
= 11.1 (0.1045) = 2.3 mm
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2.4 Axial forces for the energy calculation
The total of the axial loads in the columns is not affected by second-order

effects because of vertical equilibrium, so P, = P, which is taken as the mid-
height value calculated in 2.2 above.

Span 1:
LH col: take mid-height P, = 126.9 kN
RH col: take mid-height P, = 588.6 kN
Span 2:
RH col: take mid-height P, = 128.3 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.

Span 1:
Mid-span drop = 1414.7 mm
Increase in P, = {1/ [1-(6, /h)l-1} = {V[1-(1414.7/11577)] - 1}

= 0.139
LH rafter: take mid-length P,= 52.3 kN
Mid-span axial = 45.4, giving P4 increase = 0.139x45.4 = 6.3 kN
P, =523 + 6.3 = 58.6 kN
RH rafter: take mid-length P, = 54.5 kN
Mid-span axial = 47.6, giving P4 increase = 0.139x47.6 = 6.6 kN
P, =545 + 6.6 = 61.1 kN
Span 2:
Total Mid-span drop = 1396.6 mm
Increase in P, = {1/[1-(4, /h)]-1} = {1/[1-(1396.6 /11577)] - 1}
= 0.137

LH rafter: take mid-length P, = 55.1 kN
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Mid-span axial = 48.2, giving P4 increase = 0.137x48.2 = 6.6 kN
P, =551+ 6.6 = 61.7kN

RH rafter: take mid-length P, = 53.3 kN
Mid-span axial = 46.4, giving P4 increase = 0.137xX46.4 = 6.4 kN

P, =533 +64 =59.6kN

2.5 Second-order Energy Summation A.6

The energy summation is required to calculate A, following the methods in
A22
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Element for evatuation of Pc*phi*s*d({phi} AB BC CcD ED DF FG dG Hd
X-AXIS DEFLECTIONS

Deflections from the “elastic” frame

dxa 0.0 321 71.9 0.0 88.7 1156.6 142.8 0.0
dxb 321 71.9 887 88.7 1156 142.8 142.8 142.8
(dxb - dxa) 321 39.9 16.8 88.7 26.8 27.2 0.0 1428
Deflections from the “plastic” frame

From gravity loads

Sway of top of elastic column

dxa 0.0 11834 1183.4 1183.4 1183.4 1183.4 1183.4 0.0
dxb 1183.4 11834 1183.4 1183.4 1183.4 1183.4 1183.4 1183.4
(dxb - dxa) 1183.4 0.0 0.0 0.0 0.0 0.0 0.0 11834
Spread

dxa 0.0 0.0 116.6 0.0 233.2 583.0 699.6 0.0
dxb 0.0 116.6 2332 233.2 583.0 699.6 699.6 699.6
(dxb - dxa) 0.0 116.6 116.6 233.2 349.8 116.6 0.0 699.6
Column hinge horizontal displacement

dxa 0.0 0.0 0.0 0.0 0.0 0.0 71.0 0.0
dxb 0.0 0.0 0.0 00 0.0 0.0 0.0 71.0
(dxb - dxa) 0.0 0.0 0.0 0.0 0.0 0.0 -71.0 71.0
From horizontal loads AB BC CcD ED DF FG dG Hd
Sway

dxa 0.0 39.8 398 0.0 39.8 39.8 39.8 0.0
dxb 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8
(dxb - dxa) 39.8 0.0 0.0 39.8 0.0 0.0 0.0 39.8
Spread

dxa 0.0 0.0 1.8 0.0 3.5 47 58 0.0
dxb 0.0 1.8 3.5 3.5 47 58 58 5.8
(dxb - dxa) 0.0 1.8 1.8 3.5 1.2 1.2 0.0 5.8
|Total of (dxb - dxa) at collapse 1255.2 158.2 135.2 365.2 377.8 145.0 710 21424|
Y-AXIS DEFLECTIONS

Deflections from the “elastic” frame

dya 0.0 0.7 2761 0.0 3.4 263.8 07 0.0
dyb 07 2761 3.4 3.4 263.8 0.7 0.7 07
(dyb - dya) 0.7 2754 -272.7 34 260.4 -263.1 0.0 07
Deflections from the "plastic” frame

Mid-span drop from gravity loads

dya 0.0 0.0 11217 0.0 0.0 1121.7 0.0 0.0
dyb 0.0 11217 0.0 00 11217 0.0 0.0 0.0
(dyb - dya) 0.0 1121.7 -1121.7 00 11217 -1121.7 0.0 0.0
Deflections from the "plastic” frame

Mid-span drop from horizontal loads

dya 0.0 0.0 16.8 0.0 0.0 1.1 0.0 0.0
dyb 0.0 16.8 0.0 0.0 111 0.0 0.0 0.0
(dyb - dya) 0.0 16.8 -16.8 0.0 11.1 -11.1 0.0 0.0
|Total of (dyb - dya) at collapse 0.7 14140 -1411.2 34 1393.2 -1395.9 0.0 0.7]
psi (angle from X axis} 90.0 6.0 -6.0 90.0 6.0 -6.0 90.0 90.0
[(dxb - dxa) at collapse]*Sin(psi) 1255.2 16.5 -14.1 365.2 395 -152 -71.0 2142.4
[(dyb - dya) at collapse]*Cos(psi) 0.0 1406.2 -1403.5 00 13856 -1388.3 0.0 0.0
phi * s at collapse 1255.2 14227 -1417.6 365.2 14250 -14034 -71.0 21424
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 1.411 1.411 1.701
[Shortening = phi*s*d(phi) (modulus) 1255.2 1422.7 1251.6 4204 16404  1980.7 100.2  3643.8]
AXIAL FORCES

Pc for columns and rafters at ULS 126.9 523 54.5 588.6 551 53.3 128.3 128.3
Total midspan drop 1414.7 14147 1396.6 1396.6

Midspan height 11577 11577 11577 11877

Increase rafter mispan axial by {1/(1-drop/height) - 1} 0.139 0.139 0.137 0.137

Midspan axial 454 47.6 48.2 46.4

Increase in rafter axial 6.3 6.6 6.6 6.4

Design axial 126.9 58.6 61.1 588.6 61.7 59.6 128.3 128.3
[Incremental energy = Pc*phi*s*d(phi) 159.2 83.3 76.4 247.5 101.2 118.1 12.9 467.5] Sum= 1266
WORK DONE ROTATING HINGES

Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd
MprA 0.0 0.0 404.0 0.0 0.0 4040 4540 0.0
MprB 0.0 404.0 404.0 404.0 404.0 0.0 0.0 454.0
MprA + MprB 0.0 404.0 808.0 404.0 404.0 404.0 454.0 454.0
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 1.411 1.411 1.701
[Mpr*d(phi) 0.0 404.0 713.3 465.0 465.0 570.2 640.7 772.2] Sum= 4031
Factor on lambda_p 0.686

lambda_p from first-order analysis 1.117

lambda_M 0.766
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2.6 Load factor at failure, A, A.6
X P, ¢sdgp = 1266 ¢
IM,d¢ = 4031 ¢

(P, Ppsde
A/l A, = l - | ———————

z (Mpr do)
1266 ¢
= 1 - —_— ==

i = (222)] e
A = 0.686 X A4, = 0.686 x 1.117 = 0.766

This frame exceeds the 2/1000 limit for the sway-check method by a factor of
about 3. The above calculations demonstrate that such a flexible frame has a
serious reduction in capacity from in-plane stability effects.
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