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FOREWORD

The checking of the in-plane stability of single-storey portal frames requires different
approaches to those commonly used for multi-storey buildings. BS 5950-1:2000
introduces more rigorous recommendations for the stability checks for portal frames than
the 1990 version. This is necessary because portal frames have proved to be such a
successful structural form that more frames are being constructed with geometries that
are beyond the range foreseen when the recommendations in BS 5950-1:1990 were
prepared.

This document is intended for the design of portal frames used for single-storey buildings
loaded predominantly with roof loading that cause large bending moments in the rafters
and the external colunms. It is not intended for portals used to stabilise buildings, such
as used where cross-bracing is not possible, but the principles described are applicable to
the design of such frames.

This publication was written by Mr Charles King of The Steel Construction Institute.

The SCI would like to acknowledge with special thanks, the extensive work conducted by
CSC (UK) Ltd, particularly Mr A J Rathbone, in the development and checking of the
methods and checking the contents of the document.

The SCI would also like to express its thanks to:

Professor J M Davies (University of Manchester) and Mr Y Galea (CTICM) for
review of the document and the methods, as they were developed.

Mr M Barkus and Mr J Knott (both of Wescol Glosford), Professor D A Nethercot
(Imperial College of Science, Technology and Medicine) and Mr P Bennett (Quickport
Software) for their comments on the draft documents.

Funding for this project was gratefully received from the Department of the
Environment, Transport and the Regions (DETR) and Corns (formerly, British Steel)
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SUMMARY

This document introduces designers to the in-plane stability calculation methods in
BS 5950-1:2000 for single-storey portal frames designed using either elastic or plastic
analysis. These calculations are an essential part of the Ultimate Limit State (ULS)
verifications of portal frames. In addition to a review of all these methods, it shows how
second-order calculations can be performed even when second-order software is not
available.

This document includes:

• An introduction to the in-plane stability of single-storey portal frames.

• A commentary on the three methods of checking the in-plane stability of portal
frames given in BS 5950-1:2000, that is:

(a) The Sway-check method

(b) The Amplified Moment method

(c) Second-order analysis
• Worked examples of a simple method for second-order calculations that can be used

where second-order analysis software is not available.

The instances in which individual members need to be checked for in-plane buckling are
also explained. Second-order analysis by application of the energy method is explained
in a form that can be applied in hand calculations, and this is illustrated by four worked
examples.

Stabilité en Plan des Portiques selon la Norme BS 5950-1:2000

Résumé

Ce document présente aux calculateurs les méthodes de calcul de stabilité en plan se/on
la norme BS 5950-1:2000 pour des portiques a un niveau calculés en utilisant soit une
analyse elastique, soit une analyse plastique. Ces calculs sont une partie essentielle des
verifications aux Etats Limites U/times (EL U) des portiques. En complement de Ia
presentation de toutes ces méthodes, ii est montré comment des calculs au second ordre
peuvent être effectues sans avoir recours a un logiciel d 'analyse au second ordre.

Ce document comprend:

• Une introduction a la stabilité en plan des portiques a un niveau.

• Des commentaires sur les trois méthodes de verification de Ia stabilité en plan des
portiques données dans la norme BS 5950-1:2000, c'est-à-dire:

(a) La méthode de verification avec longueurs de flambement a noeuds déplaçables.

(b) La méthode par amplification des moments.

(c) L 'analyse au second ordre.
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(c)  L'analyse au  second ordre. 
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• Des exemples d 'application d 'une méthode simple de calcul au second ordre qui peut
être utilisée en l'absence de logiciel d'analyse au second ordre.

Les cas pour lesquels les barres doivent être vérfiées vis-à-vis du flambement dans le
plan sont aussi explicités. L 'analyse au second ordre par application de la méthode de
1 'énergie est décrite de facon a ce qu 'elle puisse être appliquée manuellement et est
illustrée par quatre exemples.

Ebene Stabilität von Rahmentragwerken nach BS 5950-1:2000

Zusammenfassung

Dieses Dokument fuhrt Tragwerksplaner in die Berechnungsmethoden der Stabilität in
derTragwerksebene von eingeschossigen Rahmentragwerken nach BS 5950-1:2000 em,
die entweder elastisch oder plastisch berechnet wurden. Diese Berechnungen sind em
wichtiger Tell der Uberprufung des Grenzzustands der Tragfahigkeit von
Rahmentragwerken. Zusätzlich zum Uberblick dieser Methoden wird gezeigt, wie
Berechnungen nach Theorie II. Ordnung durchgefuhrt werden kOnnen, auch wenn
entsprechende Software nicht verfügbar ist.

Dieses Dokument enthält:

• eine Einfuhrung in die Stabilität von eingeschossigen Rahmentragwerken in ihrer
Ebene,

• einen Kommentar zu den drei Methoden der Uberprqfung der Stabilität in
Tragwerksebene von Rahmentragwerken nach BS 5950-1:2000, weiche sind:

(a) Uberprufung der Seitensteijheit/-weichheit,

(b) Methode der mit einem VergroJi erungsfaktor erhöhten Momente,

(c) Berechnung nach Theorie II. Ordnung.

• Berechnungsbeispiele einer einfachen Methode für Berechnungen nach Theorie II.
Ordnung, die benutzt werden kann, wenn entsprechende Software nicht verfllgbar ist.

Die Fälle, in weichen für einzelne Bauteile em Knick- / Biegeknicknachweis eiforderlich
ist, werden erklärt. Die Berechnung nach Theorie II. Ordnung durch Anwendung der
Energiemethode wird in einer weise erklärt, daJ3 sie von Hand durchgefuhrt werden kann;
dies wird anhand von vier Berechnungsbeispielen illustriert.

Estabilidad de pórticos en su piano segtin BS 5950-1:2000

Resumen

Con este documento se describen a los proyectistas los métodos de cdlculo de estabilidad
de Ia BS 5950-1:2000 para porticos sencillos de una planta calculados segán métodos
elásticos o plásticos que son una parte esencial de las comprobaciones de estados ii mite

(EL U). Además de revisar esos métodos se muestra cOmo se pueden lievar a cabo
cOlculos de segundo orden incluso sin software de segundo orden.

viii
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La publicación incluye:

• Una introducción a Ia estabilidad en su piano de pórticos de una pianta.

• Comentarios sobre los tres métodos de comprobación incluidos en BS 5950-1:2000,
esto es:

(a) El método de la comprobación de ia deriva

(b) El inétodo de amp4ficaciOn de momentos

(c) Ca/cub en segundo orden.

• Ejemplos desarrollados de un método sencillo para cálculos de segundo orden
utilizable sin software de segundo orden.

También se explican los casos en que piezas individuales deben comprobarse a pandeo.
Los métodos basados en la EnergIa se explican de forma que puedan ser aplicados
manualmente, lo que se ilustra con cuatro ejemplos totalmente resueltos.

Stabiità nel piano di portali in accordo alla BS 5920-1:2000

Sominario

Questa pubblicazione affronta il problema delia stabilità nel piano di portali in acciaio e,
rivolta prevalentemente ai progettisti, riporta i metodi di ca/cob per ia progettazione sia
elastica sia plastica in accordo a/la BS 5950-1:2000. 1 caicoli effettuati in accordo a tali
metodi costituiscono una parte essenziaie del/a verfica agii Stati Limite Ultimi (S.L. U.)
di portali in acciaio. In aggiunta ad una presentazione generate di questi metodi, viene
mostrato come effettuare analisi del secondo ordine anche quando non si siano disponibili
specifici strumenti software in grado di effettuare automaticamente tale tipo di anaiisi.
Questa pubblicazione include:

• un 'introduzione aiia stabilitä nel piano di portaii in acciaio.

• un commentario ai tre metodi di verfica per 1 'instabilità nei piano dei portali in
accordo a/la BS 5950-1:2000, cioè:

(a) il metodo di controllo dello spostamento trasversale;

(b) ii metodo di ampitficazione dei momenti;

(c) 1 'analisi del secondo ordine.

• esempi appiicativi di un metodo semplficato per i caicoli del secondo ordine da
usare quando non sono disponibiii metodi piü raffinati in grado di tenere
direttamente in conto gli effetti del secondo ordine.

Viene anche trattato it caso in cui ie verifiche di stabiiità nel piano debbano essere
condotte sui sin go/i elementi. In aggiunta, è proposta / 'analisi del secondo ordine suiia
base dei metodi energetici in una forma anche applicabile manualmente, con esplicito
riferimento ai quattro esempi applicativi riportati net/a pubblicazione.

ix
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Los mktodos basados en la Energ’a  se explican de forma que  puedan ser aplicados 
manualmente, lo que se ilustra con cuatro ejemplos totalmente resueltos. 

Stabilith ne1 piano di portali in accordo alla BS 5920-1:2000 

Sommario 

Questa pubblicazione affronta il problem della stabilita ne1 piano di portali in acciaio e, 
rivolta prevalentemente ai  progettisti, riporta i metodi di calcolo per la progettazione sia 
elastica sia plastica  in accordo alla BS 5950-1:2000. I calcoli effettuati in accordo a tali 
metodi costituiscono una parte essenziale della verifica agli Stati Limite Ultimi (S.L. U.) 
di  portali  in acciaio. In aggiunta ad  una presentazione generale di questi metodi, viene 
mostrato come effettuare analisi del secondo ordine anche quando non si siano disponibili 
specifici strumenti software in grado di effettuare automaticamente tale tip0 di analisi. 
Questa pubblicazione include: 

un ’introduzione alla stabilita ne1 piano di portali in acciaio. 

un commentario ai tre metodi di verifica per l ’instabilita ne1 piano dei portali in 
accordo alla BS 5950-1:2000; ciot?: 

(a)  il metodo di controllo dell0 spostamento trasversale; 
(b) il metodo di amplijicazione dei momenti; 

(c) l’analisi del secondo ordine. 

esempi applicativi di un metodo sernplifcato per i calcoli del secondo ordine da 
usare quando non sono disponibili metodi piu  rafinati in grado di tenere 
direttamente in conto gli efSetti del secondo ordine. 

Viene anche trattato il cas0 in cui le verifiche di stabilita ne1 piano debbano essere 
condotte sui singoli elementi. In aggiunta, t proposta l’analisi del secondo ordine sulla 
base dei metodi energetici in una forma anche applicabile manualmente, con esplicito 
riferimento ai quattro esempi applicativi riportati nella pubblicazione. 
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1 THE IN-PLANE STABILITY CHECKS IN
BS 5950-1:2000

1.1 Checks for portal frames
Single-storey portal frames of economic proportions need to be checked to
ensure that they have adequate in-plane stability, whether designed by elastic or
plastic methods. This type of frame caimot be checked by the simple methods
for multi-storey frames in BS 5950-1 Clauses 2.4.2.6 and 2.4.2.7 because
axial compression in the rafter is not considered in that method. The structural
phenomena involved in in-plane stability of single-storey frames are described in
Section 2 together with a comparison with multi-storey frames.

BS 5950-1:2000 gives three methods for checking the in-plane stability of
single-storey frames:

• The Sway-check method

• The Amplified Moment method

• Second-order analysis

The methods apply to portal frames designed either by elastic design (see
Clause 5.5.2 of BS 5950-1) or by plastic design (see Clause 5.5.3 of
BS 5950-1).

It will almost always be preferable to perform these checks by software. It is
possible to perform the checks by 'hand', but the results will almost invariably
be less economical. The only benefit of the 'hand' method of second-order
analysis is to gain a greater understanding of the response of the frame to the
second-order (P-delta) effects and the loss of stiffness resulting from the
formation of plastic hinges.

1 .2 The methods in brief
1.2.1 The Sway-check method

Range of application
The Sway-check method may be used for portals that are not tied portals and
which satisfy the following geometrical limitations:

• Span/height to eaves is not more than 5.

• Rise of apex above column tops is not more than span/4 for symmetrical
spans or a value given by a formula for asymmetric rafters.

• Either the notional sway deflection from notional forces (calculated by first-
order analysis) is not more than h/bOO, or the span/depth ratio of the
rafters is within a limit given by a formula. The stiffness of the cladding is
not to be considered in calculating the notional sway deflection for
predominantly gravity load cases (e.g. Combination 1).

Advantages and disadvantages
The Sway-check method is the simplest method and gives economical designs if
the frame is sufficiently stiff to satisfy either the h/1000 check or the formula
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check because of the section sizes selected either to give the necessary strength
or to satisfy the Serviceability Limit State (SLS) requirements. This method
will often give the most economical designs for single span portals that tend to
be relatively stiff. Economy is achieved because there is no reduction in frame
strength for the gravity load cases (Load combination 1 of Clause 2.4.1.2 and
Crane combination 1 of Clause 2.4.1.3) that are generally the critical design
load cases. Many multi-span frames will not satisfy the notional sway
requirements without increasing the size of the members above the size required
for strength or for SLS requirements. When using the Sway-check method, the
steel strength (e.g. S275 or S355) has no effect on the in-plane stability
calculation.

The design steps for this method and further details of the method are given in
Section 3.

1.2.2 The Amplified Moment method

Range of application
The Amplified Moment method is a method that may be used where the frame
does not meet the limitations of the sway-check method. It may be used for
portals that are not tied portals and which have an elastic critical buckling ratio,
2cr, not less than 4.6. The elastic critical buckling ratio, 2cr, is described in
Section 2.3

Advantages and disadvantages
The Amplified Moment method is a simple method to apply when the value of
2cr is known. If easy-to-use software is available, the method is easy to use.
When software is not available, then the formulae in Section 4 may be used, but
they are complex and several formulae need to be applied for a multi-span
frame. The method gives reasonably economical designs if the frame is
relatively stiff because of the section sizes required either to give the required
strength or to satisfy the SLS requirements. In particular, where 2cr � 10, there
is no reduction in frame strength. Thus, the method will give economical
designs for most single span portals because they tend to be relatively stiff. It
will also give reasonably economical designs for multi-span frames that are
relatively stiff. However, many multi-span frames will not satisfy the
requirement that 2cr 4.6, unless the size of the members is increased above the
size required for strength or SLS requirements. The method does recognise the
improvement in in-plane stability of the frame resulting from the use of higher
strength steel (grade S355 steel). This improvement comes from an increase in

not from 2cr, which is independent of the change of steel grade.

The design steps for this method and further details of this method are given in
Section 4.

1 .2.3 Second-order analysis

Range of application
Second-order analysis is another alternative method where the frame does not
meet the limitations of the Sway-check method. It may be used for all portals
including tied portals. Tied portals must be designed using second-order
analysis. For tied portals, the analysis method must also be able to calculate the
non-linear behaviour of the apex drop, a capability that may not be included in
all packages that describe themselves as 'second-order'.
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Advantages and disadvantages
Second-order analysis is simple to apply if there is easy-to-use software
available. It will give the most economical designs for more flexible frames
such as multi-span frames. It may give less economical designs than the other
methods for stiffer frames because it will always calculate a reduction of frame
strength from second-order (P-delta) effects. The other methods have threshold
stiffness values above which the strength is not reduced. The Second-order
method does recognise the improvement in in-plane stability of the frame
resulting from the use of higher strength steel (grade S355 steel).

Further details of this method are given in Section 5.

1 .3 Selecting methods for different types of
frames

1.3.1 Single-span frames (not tied portals)
Single-span frames may be designed by any of the three methods described
above. Where the frames are within the geometrical limitations of the
Sway-check method and pass either the hIl000 check or the formula check (see
Section 1.2.1 above), the method does not give any reduction of frame strength
for the gravity load cases. Where the frames are outside the geometrical
limitations of the Sway-check method or fail the checks, another method must
be used. For frames slightly outside the geometrical limitations, it may be
worth making minor alterations to the scheme to fit into the limitations, such as
an increase in stiffness of the frame to satisfy the deflection check, or setting
the bases deeper to suit the span to height ratio or a change of rafter geometry.
Where the Sway-check method is not satisfied, either the Amplified Moment
method or Second-order analysis should be used.

1 .3.2 Multi-span frames (not tied portals)
Multi-span frames often have relatively low stiffness. Although some
multi-span frames might be sufficiently stiff for the Sway-check method, many
will not. Where the frames are too flexible and have slender internal columns,
the most efficient way to improve the frame stiffness will often be to increase
the internal column stiffness.

The amplified moment method may give an economical frame where the frame
has a value of 2, � 4.6. Where the value of 2cr 10, there is no reduction of
design strength in this method. However, many multi-span frames will have a
value of ,, less than 4.6, so this method cannot be applied. This leaves the
choice between stiffening the frame and using second-order analysis.

1.3.3 Tied portals
Tied portals should always be designed using second-order analysis. The
solution method for this analysis is not specified in BS 5950-1, leaving freedom
to choose a suitable routine. It should be noted that for tied portals with low
roof slopes, there is an important non-linearity in the apex deflections. This
arises because the compression of the rafter and the stretching of the tie reduce
the height of the apex, which reduces the vertical component of the rafter force.
To maintain equilibrium, an increased rafter force is required, which increases
the apex deflection until either equilibrium is reached or the apex snaps through.
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Therefore, whatever routine is selected, it must take account of the non-linear
behaviour of the rafter and tie system, which will almost certainly involve an
iterative procedure.

Tied portals of economical proportions will normally have very high axial
forces in the rafters. These forces often cause a significant reduction in the
stability of the frame. Therefore, rafters will often need to be made
significantly stiffer than the section that would satisfy a first-order analysis.

1 .3.4 Stability portals or 'wind portals'
Stability portals are outside the scope of this document. Stability portals are
portals used to stabilise structures where cross-bracing is not acceptable. Such
frames have little vertical loading distributed along the beam element, so have
small axial loads in the beam. The dominant failure mode is by sway.
Second-order analysis, the Amplified Moment method or the Sway-check
method (lateral load case) would be appropriate for checking stability frames,
but the gravity load case of the Sway-check method should not be used.
Alternatively, where the axial force in the beam is very low, it is reasonable to
design such frames according to the rules for multi-storey sway-frames rather
than the rules for ordinary portal frames.

1 .4 Required load factor, Ar
BS 5950-1 Clauses 5.5.2 and 5.5.3 introduce the required load factor A. This
is a factor to allow for P-delta effects where these have not been calculated in
the global analysis. For elastic design of portal frames, the output from a
first-order global analysis with ULS loads must be multiplied by 2r before the
member resistances are checked. For plastic design, the plastic collapse factor,
A, calculated by first-order global analysis with ULS loads must not be less
than 2. Member strength and stability calculations should be made at 2 x ULS
rather than 1.0 x ULS.

1 .5 Base stiffness
BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. This may be summarised as follows for the cases most
frequently occurring in portal frame design.

Base with a pin or rocker
The base stiffness should be taken as zero

Nominally pinned base
If the base moment is assumed to be zero, the base should be assumed to be
pinned in the global analysis used to calculate the moments and forces around
the frame. However, the base stiffness may be assumed to be equal to 10% of
the column stiffness when checking frame stability or determining in-plane
effective lengths, which form part of the ULS process. When using
elastic-plastic design, an appropriate base capacity must also be specified.

For calculating deflections at SLS, the base stiffness may be assumed to be 20%
of the column stiffness, but this should not be used for in-plane stability checks.
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Other types of base
BS 5950-1 Clause 5.1.3 also gives guidance for the use of nominally rigid bases
and nominal semi-rigid bases.

Application of these provisions for base stiffness to the different methods of
checking frames is given in Section 3.3.4 for the Sway-check method, in
Section 4.3.5 for the Amplified Moment method and in Section 5.3.4 for
Second-order methods. The application to the hand method of second-order
calculations is given in Appendix A.2.4 for common portals and
Appendix B.2.4 for tied portals.

1 .6 Notional horizontal forces
1.6.1 General
BS 5950-1 uses notional horizontal forces, which are taken as 0.5% of the
factored vertical dead and imposed loads. They may be applied at the tops of
the columns for simplicity, or at the point of application of load, as shown in
Figure 1.1.
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BS 5950-1  Clause 5.1.3 also gives guidance for the use of nominally rigid bases 
and  nominal  semi-rigid  bases. 

Application  of these provisions  for base stiffness to  the different  methods of 
checking  frames  is given in Section  3.3.4  for the Sway-check  method, in 
Section  4.3.5  for the Amplified Moment method and in Section  5.3.4  for 
Second-order  methods.  The  application  to the hand method of second-order 
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These notional horizontal forces are used for two completely different purposes:

(i) For checking frame strength
The notional horizontal forces are applied as a design horizontal load to
allow for the effects of practical imperfection such as a lack of verticality,
as given in Clause 2.4.2.4. The notional horizontal forces are applied in
Load combination 1 of Clause 2.4. 1.2, which is combination of dead load
plus imposed loads (gravity loads).

(ii) For checking frame stiffness
The notional horizontal forces are applied as the loading used in a stiffness
check of frames such as in Clause 5.5.4.2.1. In this application, the
notional horizontal forces are applied to the frame without any other
loading to assess the stiffness of the frame by calculating the horizontal
deflections of the column tops assuming linear elastic behaviour.
Clause 5.5.4.2.1 says that the forces should be equal to 0.5% of the
vertical reaction at the base of the respective column. This assumes that
the column reactions are known exactly before the notional horizontal
forces are defined. In practice, the deflections are not sensitive to the
distribution of the notional horizontal forces. Thus, some approximation
may be made in the distribution of these loads. The most important point
is that notional horizontal forces must be calculated from all the vertical
loads on the building and this is most conveniently calculated by
considering the vertical reactions of the columns.

Although the magnitude of the forces in both (i) and (ii) above is the same, at
0.5% of factored loads, there is an important difference in the loads to be
applied in the case of crane loads. In Clause 2.4.2.4, it is clear that the vertical
crane loads need not be included when calculating the notional horizontal forces
for checking frame strength. By contrast, all vertical loads must be applied
when checking the frame stiffness, hence in the stiffness check, the notional
horizontal forces must include 0.5% of the vertical crane loads. However, the
in-plane stability of the frame is not affected by dynamic loading, so the
notional horizontal force should be taken as 0.5% of the factored crane load
without dynamic or impact effects.

1.6.2 Mezzanines and other connected structures
Where a mezzanine floor or other structure is connected to the portal frame, the
stability of the connected structure must be considered when checking both the
strength and the stiffness of the portal. Where a connected structure contains its
own stability system (e.g. cross-bracing, stability portal or rigid moment
connections) that makes the connected structure at least as stiff as the portai
frame, then the portal need not resist notional horizontal forces from the
connected structure. Where the connected structure is not restrained by any
stability system, the sum of the notional horizontal forces from the connected
structure must be applied to the portal frame. In the intermediate condition,
where the connected structure provides some stability but is not as stiff as the
portal frame, the notional horizontal forces from the connected structure may be
shared.

The stiffness of the connected structure and the portal frame may be calculated
in terms of the slope of the columns induced by the notional horizontal forces.
Alternatively, it may be calculated in terms of the deflection at the connection
points induced by the notional horizontal forces. It is rare to find these slopes
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The notional horizontal forces are applied as the  loading used in a stiffness 
check of frames such as in Clause 5.5.4.2.1. In  this application, the 
notional horizontal forces  are applied to  the frame without any other 
loading to assess the stiffness of the frame by calculating the horizontal 
deflections of  the column tops assuming linear elastic behaviour. 
Clause 5.5.4.2.1 says that  the forces should be equal to 0.5% of  the 
vertical reaction at the base  of  the respective column. This assumes that 
the column reactions are known exactly before the  notional horizontal 
forces are defined. In practice, the deflections are not sensitive to the 
distribution of  the  notional horizontal forces. Thus, some approximation 
may  be made in  the distribution of  these loads. The most important point 
is that notional horizontal forces must be  calculated from all  the  vertical 
loads on the  building and this is most conveniently calculated by 
considering the vertical reactions of the columns. 

Although the magnitude of  the forces in both (i) and (ii) above is  the same, at 
0.5% of factored loads, there is an important difference in the loads to be 
applied in the case of crane loads. In Clause 2.4.2.4,  it is clear that the vertical 
crane loads need not be  included when calculating the  notional horizontal forces 
for checking frame strength. By contrast, all vertical  loads must be applied 
when checking the frame stiffness, hence in the stiffness check, the  notional 
horizontal forces must  include 0.5% of the vertical crane loads. However, the 
in-plane  stability  of  the frame  is  not affected by dynamic loading, so the 
notional horizontal force should be taken as 0.5% of the factored crane load 
without dynamic or impact effects. 

1.6.2 Mezzanines  and  other  connected  structures 

Where a mezzanine floor or other structure is connected to  the  portal frame, the 
stability of the connected structure must be considered when checking both  the 
strength and the stiffness of the portal. Where a connected structure contains its 
own stability system (e.g. cross-bracing, stability portal or rigid moment 
connections) that makes the connected structure at least as stiff as the portal 
frame, then the portal need not resist notional horizontal forces  from the 
connected structure. Where the connected structure is not restrained by  any 
stability system, the sum of the notional horizontal forces from the connected 
structure  must be applied to  the portal frame. In  the intermediate condition, 
where the connected structure provides some  stability but is not as stiff as the 
portal frame, the  notional horizontal forces from the connected structure may  be 
shared. 

The stiffness of  the connected structure and the portal frame may  be  calculated 
in terms of the slope of  the columns induced  by  the  notional horizontal forces. 
Alternatively, it  may  be calculated in terms of the deflection at the connection 
points induced by the notional horizontal forces. It is rare  to find  these  slopes 
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or deflections uniform throughout a structure, so the mean or median of the
calculated values may be used.

1 .7 Local concentrated lateral loads in buildings
Building structures are often subject to local concentrated loads, such as crane
loads. Where these cause sway deflections (e.g. crane surge loads or notional
horizontal forces), these loads may be shared by the adjacent frames in
buildings with metal roof sheeting or with continuous bracing.

7
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2 INTRODUCTION TO IN-PLANE
STABILITY

2.1 Why are there in-plane stability checks?
All slender members resisting axial compression would buckle if the applied
axial force were large enough. Stability checks calculations verify that the
resistance to buckling is greater than the applied forces. When checking the
stability of a column, the buckling resistance is calculated for buckling about
both the major axis and the minor axis.

In frames, the stability checks must also verify the adequacy of the buckling
resistance about both the major axis and the minor axis. In normal portal
frames, buckling out of the plane of the frame is checked in the same way as
for any other beam-column, considering buckling between lateral restraints and
between torsional restraints provided by bracings etc. These bracings make the
effective lengths of each element easily identifiable. However, buckling in the
plane of the frame is more complicated than in normal beam column elements.
This is because there is normally no bracing in the plane of the frame, and thus
the restraint to any column depends on the stiffness of the rafters and the other
columns. Equally, the restraint to any rafter depends on the stiffness of the
columns and the other rafters. Therefore, checks for the stability of the frame
must consider the entire frame stiffness. Although engineers are accustomed to
checking the buckling resistance of columns using effective lengths, the effective
lengths of portal frames can only be defined correctly if the stiffness of the
entire frame is considered.

The in-plane stability checks for portal frames in BS 5950-1 differ from those
for beam and column buildings. This is because the axial loads in portal rafters
have a much greater effect on the stability of the frame than the axial loads that
might occur in the beams of common beam and column buildings.

2.2 Axial compressive forces in frames
2.2.1 General
In-plane stability depends on the magnitude of the axial compression in the
members, so it is important to understand the relative magnitude of these forces
in the rafters and columns.

Most frames have axial compressive forces in some of the members. The
distribution of forces depends not only on the applied loads, but also on the
structural form of the frame and the bending moments throughout the frame.
The magnitude of the second-order buckling effects depends not only on the
magnitude of the force, but also on the elastic critical buckling load of the
members and the elastic critical buckling load of the entire frame. This is
discussed in Section 2.4.2 and Section 2.4.3. The lower the elastic critical
buckling loads, the greater will be the second-order effects from a given axial
compressive force.

Where there is axial tension in the members, the second-order effects increase
the stiffness of the frame, so no reduction in frame capacity need be considered.
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2.2.2 Ordinary portals
A typical bending moment diagram for an ordinary portal frame under vertical
loading is shown in Figure 2.1. There is a horizontal reaction at the bases of
the columns to maintain equilibrium with the bending moments in the columns.
To maintain the horizontal equilibrium of these horizontal reactions, the rafters
carry an axial compression as shown in Figure 2.2. These axial compressive
forces are not large in magnitude, but they may be significant compared with
the elastic critical buckling load of the rafters, because the rafters are relatively
long. This effect is considered in Section 2.4.2

The axial compressive force in the rafter is seriously affected by the ratio of the
portal span to the column height. This is because the bending moment at the
column top depends on the span and the horizontal reaction at the column base
depends on the moment at the column top and the height of the column. The
moment at the column top is given approximately by:

2

Column top moment, M

where:

12

w is the distributed load on the rafter

L is the span of the portal.

The horizontal reaction for a piimed base is then given by:

H=-L----
H 12h

where:

h is the height of the column.

Therefore, for a given loading and span, the axial compression in the rafters is
less for a high portal frame than for a low frame.

The axial compression in the rafters produces second-order effects in the rafters,
which reduces the in-plane stability of the frame in addition to the second-order
effects from the axial compression in the columns.

9
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M wL2 
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Figure 2.2 Horizontal reactions and rafter axial force

2.2.3 Tied portals
Tied portals in which the tie is near the eaves level behave very differently from
ordinary portals. The structural behaviour is more like that of a rigidly-jointed
truss on posts. The axial compressive forces in the rafters are much higher than
in ordinary portals, especially for portals with low roof slopes.

The bending moments for a tied-portal are illustrated in Figure 2.3. The
bending moment diagram is similar to a pair of fixed ended beams, each with a
span from eaves to apex. Therefore, the bending moments both in the rafters
ad in the columns are approximately a quarter of the bending moments in an
ordinary portal. This reduction in the bending moment allows the use of a
rafter with a much smaller bending resistance. The reduced bending moments
are a consequence of the truss action of the tied portal. The axial loads are
shown in Figure 2.4.

7-0—-

Figure 2.4 Column shears and rafter and tie axial forces

The high axial loads on rafters that require only relatively small bending
resistance means that the rafters are seriously affected by second-order effects.
For this reason, it is recommended that tied-portals are always checked by

Figure 2.3 Bending moments in a tied portal
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Figure 2.4 Column shears and rafter and tie axial  forces 
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second-order analysis. However, if this is to be done, the checks should be no
less rigorous than the in-plane checks on a truss rafter. In addition, the
calculations must allow for the increase in axial forces arising from a reduction
in the height between the apex and the tie. This reduction in height is a
consequence of the strains in the rafters and tie. A convenient method of
avoiding this reduction in height is to install a strut between the apex and the tie
to maintain a constant height between the apex and the tie. This must be
properly restrained against out-of-plane displacements of the frames at both
ends.

2.3 Elastic critical buckling of frames
Struts have a theoretical elastic critical buckling load, or Euler load, which
could only be reached if the strut has an infinitely high strength. The buckling
load, or Euler load, for a pin-ended strut is given by:

= n;2E1

E is the Young's modulus

I is the inertia of the strut

L is the length of the strut.

The critical buckling load is a theoretical load and exceeds the actual failure
load of a real strut as shown in Figure 2.5. In the figure, both Pcr and the
squash load P, (= Area x yield stress) are shown.

cr

r'fail

Slenderness

Elastic critical buckling load of a strut
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Similarly, frames have a theoretical elastic critical buckling load, which could
only be reached if the frame has an infinitely high strength. This will be
referred to in this document as Vcr. This is commonly expressed in a ratio
called 'lambda crit', 2cr, which is defined as:

vcr
cr

VULS

where:

Vcr is the elastic critical buckling load

VULS is the applied loading at ULS.

The value of Vcr depends on the distribution of load on the frame, so 2, should
be calculated from values of Vcr and VULS that have proportionately the same
distribution of load.

The value of varies according to the magnitude of the applied ULS loading,
VULS. A large value of 2, indicates that the loading on the frame is well below
the buckling resistance. A value of 2cr just above unity indicates that the frame
is near to its failure load. It must be remembered that failure will usually occur
well below Vcr due to bending stresses in the frame, initial imperfections and the
finite value of yield stress. However, ,l. is a very useful ratio, both as an
indicator of the sensitivity of the frame to buckling and in calculating
amplification factors.

2.4 Second order (P-delta) effects
2.4.1 General
The strength checks for any structure are valid only if the global analysis gives
a good representation of the behaviour of the actual structure.

When any frame is loaded, it deflects and its shape under load is different from
the undeformed shape. The deflection causes the axial loads in the members to
act along different lines from those assumed in the analysis, as shown
diagrammatically in Figure 2.6 and Figure 2.7. If the deflections are small, the
consequences are very small and a first-order analysis (neglecting the effect of
the deflected shape) is sufficiently accurate. However, if the deflections are
such that the effects of the axial load on the deflected shape are large enough to
cause significant further deflection, the frame is said to be sensitive to
second-order effects. These second-order effects, or P-delta effects, can be
sufficient to reduce the resistance of the frame.

Second-order effects are geometrical effects and should not be confused with
material-non-linearity.

There are two categories of second order effects:

(i) Effects of deflections within the length of members, sometimes called P.
(P-little delta) effects.

(ii) Effects of displacements of the intersections of members, sometimes called
P.4 (P-big delta) effects.
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The practical consequence of P.S and P.zl effects is to reduce the stiffness of
the frames below that calculated by first-order analysis. Single-storey portals
are sensitive to the effects of the axial compression forces in the rafters. These
forces are commonly of the order of 10% of the elastic critical buckling load
(or Euler load) of the rafters, around which level the reduction in effective
stiffness becomes important. Tied portals are especially sensitive to the effects
because the axial compression forces in the rafters are commonly many times
higher than in ordinary portals.

Because of the second-order effects due to the rafter compression, the simple
check for 2. of multi-storey buildings in Clause 2.4.2.6 of BS 5950-1 is
unconservative for portal frames.

2.4.2 P.8(P—Iittle delta) effects
P.S effects on member behaviour are due to displacements at right-angles to a
straight line between the ends of the member. Typical displacements are shown
in Figure 2.8
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Figure 2.6 Asymmetric or sway mode of deflection
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Figure 2.7 Symmetric mode of deflection

Figure 2.6 Asymmetric or sway  mode of  deflection 

Figure 2.7 Symmetric mode of  deflection 
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These displacements may be the result of an external load or moment, or may
be the result of the natural tendency to buckle under pure axial load. The
displacements are the sum of the initial deformation of the member and the
deflection due to loading. The result of the second-order effects is to increase
the bending moment when the axial load is compressive (see Figure 2.9). This
increase in the bending moment increases the curvatures, which reduces the
effective stiffness of the members. Conversely, when the axial load is tensile, it
increases the effective stiffness, though the effect will generally be minimal in
common single-storey portal frames.

M1 M2

p4* .4_p 1st order moments
/ and forces

[jJJJJJJJJJJJJJJJJJJJJIftft]

st order bending moments

1st order displacements

2nd order equilibrium moments

P. moments

Figure 2.9 P.S (P — little delta) effects

A simple illustration of P. S effects is the behaviour of a simply supported beam
carrying a distributed load that varies as a sine curve, as shown in Figure 2.10.
The deflected shape is also a sine curve. The central deflection when there is no
axial force is defined as

14

Figure 2.8 Typical displacements d (little delta)Figure 2.8 Typical  displacements d  (little delta) 

These displacements may be the result of an external load or moment,  or may 
be  the result of the natural tendency to buckle under pure axial load. The 
displacements are the sum  of  the initial deformation of  the member and  the 
deflection due to loading. The result of  the second-order effects is to increase 
the bending  moment when  the axial load is compressive (see Figure 2.9). This 
increase in the bending  moment increases the curvatures, which reduces the 
effective stiffness of the members. Conversely, when  the  axial load is tensile, it 
increases the effective stiffness, though the effect will generally be  minimal  in 
common single-storey portal frames. 
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Figure 2.9 P. 6 (P - little delta)  effects 

A simple illustration of P .  6 effects is the behaviour of a simply supported beam 
carrying a distributed load that varies as a sine curve, as  shown  in Figure 2.10. 
The deflected shape is also a sine curve. The central deflection when there is no 
axial force is defined as do. 
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Figure 2.10 P.S effects in a simply supported beam

Elastic theory'2 shows that when an axial compression, P, is applied, the central
deflection increases to 6 where:

p

Lip —

1 'Cr
where:

2,rEIP = the Euler buckling load
L2

E is Young's modulus

I is the inertia

L is the length.

As P increases, 1 — decreases so S will increase. The stiffness, El, of
'icr

the beam affects not only the deflection 5, but also it affects the increase of the
deflection {1/[1 —

The difference in bending moment between the first-order analysis and the
second-order analysis, SM, is:

SM = P(S—S0)

( P/P
= IPSO

1\ 1P/Pcr

P
Writing —a- = 2cr then:

P

SM = PS0
1

2cr 1
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Figure 2.10 P. S effects in a simply  supported  beam 

Elastic  theoryrz1  shows  that when an axial compression, P,  is  applied, the central 
deflection  increases  to dp where: 

6 0  S ,  = 
1 - P / P c r  

where: 

n 2  EI p = -  the Euler buckling load 
L2 cr 

E is  Young's  modulus 

I is the inertia 

L is the length. 

As P increases, [l - $1 decreases so S will increase.  The  stiffness, EZ, of 

the beam affects not only the deflection So, but  also it affects the increase of  the 
deflection { 1/[1 - (P/Pc)]}.  

The  difference in bending moment between the first-order  analysis and the 
second-order  analysis, SM,  is: 

P 

- - [P,, p/pcr 1 
1 - P/Pcr 

Writing - = Acr then: PC, 
P 
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2.4.3 P.A (P-big delta) effects in purely elastic frames
P.4 effects are the effects on overall frame behaviour due to displacements of
the ends of members at right-angles to their lengths. P.4 effects are shown in
their simplest form in Figure 2.11. A vertical load P is applied to the top of a
cantilever colunm in which the colunm top is offset by a distance 4 from a
vertical line through the column base. Therefore, the column must not only
resist the axial load P but also a moment that increases along its length to a
value of P.4 at the base.

A iP
< >4,

P. A

Figure 2.11 P. 4 effects on a cantilever column

The displacements, 4, are the sum of the initial deformation of the frame and
the deflection due to loading. For pitched roof portals, the principal modes of
deflection are lowering of the apex and sway, as shown in Figure 2.12 and
Figure 2.13.
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Figure 2.12 Typical displacements 4 (big delta) in a sway mode
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2.4.3 P.A (P-big delta)  effects in purely  elastic  frames 

P . A  effects are the effects on overall frame behaviour due to displacements of 
the ends of members at right-angles to  their lengths. P . A  effects are shown in 
their simplest form in Figure 2.1 1. A vertical load P is  applied to the  top  of a 
cantilever column in  which  the column top  is offset by a distance A from a 
vertical line through the column base. Therefore, the  column  must  not  only 
resist the axial load P but also a moment that increases along its  length to a 
value of P. A at the base. 

Figure 2.1 1 P. A effects on a cantilever  column 

The displacements, A ,  are the sum of  the  initial deformation of  the frame and 
the deflection due to loading. For pitched roof portals, the  principal modes of 
deflection are lowering of  the apex and sway, as shown in Figure 2.12 and 
Figure 2.13. 

Figure 2.12 Typical  displacements A (big delta)  in a Sway 
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Another possible mode of failure that is sensitive to P.zl effects is 'arching
failure' or 'snap-through' of a pair of rafters, see Figure 2.14. In this form of
failure, the spread of the valleys allows the apex of the roof to drop, so
reducing the arching effect and increasing the bending moments in the rafters
and columns.

Tension forces tend to increase the effective stiffness, but this is rarely
significant in common structures.

Frames have critical buckling loads, Vcr, similar in concept to the critical
buckling loads, for struts as described in Section 2.3. The ratio of the
elastic critical buckling load, V , to the ULS, load VULS ,is expressed as
the critical buckling ratio.

In most practical single-storey portal frames, the first mode and second mode of
buckling are the most important. This is because the first mode of buckling,
shown in Figure 2.15, is similar in shape to the typical sway deflections shown
in Figure 2.6. Also, the second mode of buckling, shown in Figure 2.16, is
similar in shape to the typical symmetrical deflections shown in Figure 2.7.

K
A3

Figure 2.13 Typical displacements zl (big delta) in a symmetrical mode

Figure 2.14 Arching failure or snap-through

I
I

Figure 2.15 First mode of buckling (buckling load
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Figure 2.13 Typical  displacements A (big  delta)  in  a  symmetrical  mode 

Another possible mode of failure that is  sensitive  to P.A effects  is  ‘arching 
failure’  or  ‘snap-through’ of a  pair of rafters, see Figure  2.14. In this  form of 
failure, the spread of  the valleys  allows the apex of  the roof to  drop, so 
reducing the arching  effect  and  increasing the bending moments in the rafters 
and  columns. 

Tension  forces tend to  increase the effective  stiffness, but this  is  rarely 
significant in common structures.. 

Figure 2.14 Arching  failure or snap-through 

Frames have critical buckling loads, V,,, similar in concept to the critical 
buckling loads, P,,, for  struts  as  described in Section 2.3.  The  ratio of  the 
elastic  critical buckling load, Vcr , to  the ULS, load Vu,, , is expressed as A,,, 
the critical buckling ratio. 

In most practical  single-storey  portal  frames, the first mode and second mode of 
buckling are the most important.  This  is because the first mode  of buckling, 
shown in Figure  2.15,  is  similar in shape to the typical sway deflections shown 
in Figure 2.6. Also, the second mode  of buckling, shown in Figure  2.16,  is 
similar in shape to the typical symmetrical  deflections shown in Figure 2.7. 

Figure 2.1 5 First  mode of buckling  (buckling load VWI)  
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The deflected form of a frame can be considered as the sum of a number of
component deflected forms, where each component is in the shape of one of the
buckling modes. Each component of the deflection will be increased according
to the ,, for that mode. Therefore, if a particular deflection, ô, is made up of
components ô1 from buckling mode 1, and 82 from buckling mode 2, then the
actual deflection, 8, including second-order effects, will be given by:

= cr
1+821

cr

2cri 1) 12cr2 1

Normally in portal frames, the buckling load in the second mode, Vcr2, is at
least twice the buckling load in the first mode, Vcri, so the following conclusions
can be drawn:

(i) If V >> V , then >> , so that 2 2cri

cr2 cr1 cr2 cr1 1
7Lcr2

— 1 'cr1 —

This means that deflections similar to the first mode of buckling will
introduce bigger P-delta effects than deflections similar to the second mode
of buckling.

(ii) If the deflections from a load case are almost entirely similar to one mode
of buckling, the P-delta effects will be dominated by

2cr
for that mode of buckling.

2cr -1

In many practical frames, the critical load case for ULS is the mainly gravity
load case:

1.4 x dead load + 1.6 x imposed load + NHF

where:

NHF is the sum of the notional horizontal forces (which is the very small
load of 0.5% of the factored vertical loads).

For this load case, the deflection form is similar to the second mode of
buckling, the symmetrical mode shown in Figure 2.16, up to the formation of
the first plastic hinge. This buckling mode normally has a relatively high
critical buckling load, Vcr, giving a relatively high value for Acr. Thus, this load
case commonly has only small magnifications of P-delta effects up to the load
level at which the first hinge forms.

Load cases involving lateral loads, such as lateral wind loads or crane horizontal
loads, deflect into a shape similar to the first mode of buckling, the
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Figure 2.16 Second mode of buckllng (buckling load Vcr2)Figure 2.1 6 Second mode of buckling  (buckling load VCR) 

The deflected form of a frame can  be considered as the sum of a number of 
component deflected forms, where each component is in the shape of one of  the 
buckling modes. Each component of  the deflection will  be increased according 
to the Acr for that mode. Therefore, if a particular deflection, 6, is  made  up  of 
components 6, from buckling mode 1, and d2 from buckling mode 2, then  the 
actual deflection, dV, including second-order effects, will  be  given  by: 

Normally in portal  frames, the  buckling  load in the second mode, VcrZ, is  at 
least twice the buckling load in  the first mode, V,,,, so the  following conclusions 
can be drawn: 

This means that deflections similar to the first mode of  buckling  will 
introduce bigger P-delta effects than deflections similar to, the  second  mode 
of buckling. 

(ii)  If the deflections from a load case are almost entirely similar to one  mode 
of buckling, the  P-delta effects will  be dominated by 

[h) for that mode of buckling. 

In many practical frames, the critical load case  for ULS is  the  mainly  gravity 
load case: 

1.4 x dead load + 1.6 x imposed load + NHF 

where: 

NHF is the sum of  the  notional horizontal forces (which is  the very small 
load of 0.5% of  the factored vertical loads). 

For this load case, the deflection form  is similar to  the  second  mode  of 
buckling, the symmetrical mode shown in Figure 2.16, up to the formation of 
the first plastic hinge. This buckling  mode normally has a relatively  high 
critical buckling load, V,,, giving a relatively high value for A,,. Thus, this  load 
case  commonly has only small magnifications of  P-delta effects up to the  load 
level at which the first hinge forms. 

Load  cases involving lateral loads, such as lateral wind loads or crane horizontal 
loads, deflect into a shape similar to  the first mode of buckling, the 
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asymmetrical mode shown in Figure 2.15. This buckling mode often has a
relatively low critical buckling load, Vcr, giving a relatively low value for Acr.
Therefore, this load case commonly has significant magnification of P-delta
effects.

2.4.4 P.IX effects in frames with plastic hinges
When a plastic hinge has formed such that the frame becomes asymmetrical,
there will be very significant sway deflections as the vertical load is increased,
as shown in Figure 2.14. This sway occurs because asymmetric frames deflect
horizontally when vertical loads are applied and the plastic hinge changes even
symmetric frames to being asymmetric in terms of stiffness.

In addition, the reduction of frame stiffness due to the formation of hinges
changes the buckling modes and reduces the value of Vcr, so the magnification
of P-delta effects is increased.

2.4.5 Different load cases on the same structure
The magnitude of the P-delta effects determines whether these effects can be
neglected in the verification of a frame, or whether they must be explicitly
included in the verification.

It is the magnitude of the deflection, combined with the magnitude of the axial
load that is important. Therefore, the same frame may be insensitive to P-delta
effects in one load case, but sensitive to P-delta effects in another load case.
For example, a frame loaded so that it deflects symmetrically, such as the frame
in Figure 2.7, might be relatively insensitive to P-delta effects because the
deflection of the apex does not affect the forces and moments much. This is
because the column spread is equal and opposite, so there is not a tendency to
fall over sideways. However, the same frame loaded so that it deflects
asymmetrically, such as the frame in Figure 2.7, might be relatively sensitive to
P-delta because the sway causes a tendency to fall over sideways. This
difference in sensitivity for symmetric and asymmetric load cases is common in
portal structures with either single-span or multi-span frames.

2.4.6 Differences between portals and multi-storey frames
The differences between the stability checks for portals and the stability checks
for multi-storey frames often cause confusion. The reason for different checks
is because of the difference between the P-delta effects of the axial compression
in the beams of multi-storey frames and the P-delta effects of axial compression
in portal rafters.
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Figure 2.17 Significant sway deflections due to plastic hinge formation
in a 'gravity load' combination (the lateral load is the very
small notional horizontal force)

asymmetrical mode shown in Figure  2.15.  This buckling mode often has a 
relatively low critical buckling load, V,,, giving  a  relatively low value for &. 
Therefore,  this load case  commonly has significant  magnification of P-delta 
effects. 

2.4.4 P.A effects  in  frames  with  plastic  hinges 

When a  plastic hinge has formed  such that the frame  becomes  asymmetrical, 
there will be very significant sway deflections as the vertical load  is increased, 
as shown in Figure  2.14.  This sway occurs because asymmetric  frames  deflect 
horizontally when vertical  loads  are  applied  and the plastic hinge changes  even 
symmetric  frames  to being asymmetric in terms of stiffness. 

In addition, the reduction of frame  stiffness due to  the formation of hinges 
changes the buckling modes and  reduces the value of V,,, so the magnification 
of P-delta  effects is increased. 

Figure 2.1 7 Significant sway  deflections due to plastic  hinge  formation 
in a  #gravity load' combination (the lateral  load is the very 
small  notional  horizontal  force) 

2.4.5 Different  load  cases  on  the  same  structure 

The  magnitude of  the P-delta effects  determines whether these effects  can be 
neglected in the verification of a  frame,  or whether they must be explicitly 
included in the verification. 

It  is the magnitude of the deflection,  combined with  the magnitude of the axial 
load that is  important.  Therefore, the same  frame may  be insensitive to P-delta 
effects in one load case,  but  sensitive  to  P-delta  effects in another load case. 
For  example,  a  frame loaded so that it  deflects  symmetrically, such as the frame 
in Figure 2.7, might be relatively insensitive to P-delta  effects because the 
deflection of  the apex  does  not  affect the forces  and moments much.  This is 
because the column spread is  equal  and  opposite, so there is not a tendency to 
fall  over  sideways.  However, the same frame loaded so that it  deflects 
asymmetrically, such as the frame in Figure  2.7, might be relatively sensitive to 
P-delta because the sway causes  a tendency to fali over  sideways.  This 
difference in sensitivity  for  symmetric  and  asymmetric load cases is common in 
portal  structures with either  single-span or multi-span frames. 

2.4.6 Differences  between  portals  and  multi-storey  frames 

The  differences between the stability  checks  for  portals and the stability checks 
for  multi-storey  frames often cause  confusion. The reason for  different  checks 
is because of  the difference between the P-delta effects of the axial compression 
in the beams of multi-storey frames  and the P-delta effects of axial compression 
in portal  rafters. 
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The bending moment diagram for a multi-storey frame is shown in Figure 2. 18.
The bending moments in the columns induce shear forces in the columns that
act in opposite directions above and below each beam. These opposing shear
forces tend to cancel out, so the axial force induced in the floor beams to
maintain horizontal equilibrium is small. These forces are shown in Figure
2.19. In addition, the span/depth ratio of floor beams is normally much less
than the span/depth ratio of portal rafters. This is because floor loading is
much greater than normal portal roof loading and floors generally have greater
stiffness requirements to limit deflections or vibrations. Therefore the
second-order effects in the floor beams in multi-storey frames of modest spans
are usually so small that they do not affect the stability of the frame.

The formula for calculating , for multi-storey buildings in Clause 2.4.2.6 of
BS 5950-1 is acceptable for multi-storey buildings, but not acceptable for
calculating 2, for single-storey portal frames because it ignores any
second-order effects in the beams.-_-
T LLL
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Figure 2.18 Typical bending moments in a rigidly-jointed multi-storey

frame

p.

_lI

4

Figure 2.19 Column shear and beam axial forces in a rigidly-jointed
multi-storey frame
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The bending moment diagram  for a multi-storey frame is shown in Figure 2.18. 
The bending moments in the columns induce shear forces in  the columns that 
act in opposite directions above and  below each  beam.  These opposing shear 
forces tend to cancel out, so the  axial force induced in  the floor beams  to 
maintain horizontal equilibrium is small. These  forces  are shown in Figure 
2.19. In addition, the span/depth ratio of floor beams is normally much  less 
than  the span/depth ratio of portal rafters. This  is because floor loading is 
much greater than normal portal  roof  loading and floors generally have greater 
stiffness requirements to  limit deflections or vibrations. Therefore the 
second-order effects in the floor beams  in  multi-storey frames of  modest spans 
are usually so small that they do not  affect  the stability of the frame. 

The  formula  for calculating Ac, for multi-storey buildings in  Clause 2.4.2.6 of 
BS 5950-1 is acceptable for multi-storey buildings, but not acceptable for 
calculating /lcr for single-storey portal frames because it  ignores  any 
second-order effects in  the beams. 

Figure 2.1 8 Typical  bending  moments  in a  rigidly-jointed  multi-storey 
frame 

Figure 2.19 Column shear and beam axial  forces  in a rigidly-jointed 
multi-store y frame 
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3 SWAY-CHECK METHOD

3.1 Introduction
The Sway-check method for checking the in-plane stability of a portal frame
requires only simple analysis techniques. The method is derived from the
in-plane stability checks of the 1990 version of BS 5950-1. It applies to
pitched-roof, monopitch and flat-roofed portal frames. The check identifies
frames in which the second-order effects in the gravity load case (1.4 Dead
Load + 1.6 Live Load) are sufficiently small that they may be ignored. This
restriction is achieved by the geometrical limitations described in Section 3.2
and by a check on sway stiffness.

The method may be applied either by;

• the h/1000 check (Section 3.3) or

• the Formula method (Section 3.4).

For multi-span frames, the rafters in internal spans must be checked by the
snap-through check (Section 3.5).

This method is not suitable for tied portals (see Section 5.3.5).

3.2 Geometrical limitations
The Sway-check method of BS 5950-1 is only valid when applied to frames in
which the spans comply with the following limitations, shown in Figure 3.1.
These limits are defined in BS 5950-1 Section 5.5.4.2.1.

• L�5/z
• hr�L/4 and
• (hr/Sa)2 +(hr fsb)2 � 0.5 for asymmetric rafters

where:

L is the span, taken as between centre-lines of the columns

h is the column height, taken as the height from the top of the
foundation to the point of intersection of the centre-line of the rafter
and the centre-line of the column; and

h, Sa and Sb are as defined in Figure 3.1.
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3.1 Introduction 
The  Sway-check method for  checking the in-plane stability of a  portal  frame 
requires only simple  analysis techniques. The method is  derived  from the 
in-plane stability  checks of  the 1990 version of BS 5950-1.  It  applies to 
pitched-roof,  monopitch  and  flat-roofed  portal  frames.  The  check  identifies 
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3.2 Geometrical  limitations 
The  Sway-check method of BS 5950-1 is only valid when applied to  frames in 
which the spans  comply  with the following limitations, shown in Figure 3.1. 
These  limits  are  defined in BS 5950-1 Section 5.5.4.2.1. 

L s 5 h  

h, L/4 and 

(h,/s,)’ +(h, /S$ 5 0.5 for  asymmetric  rafters 

where: 

L is the span, taken as between centre-lines of the columns 

h is the column  height, taken as the height from the  top  of  the 
foundation to  the point of intersection of  the centre-line of the rafter 
and the centre-line of the column;  and 

h,, S, and S b  are as defined in Figure  3.1. 
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Figure 3.1 Geometric parameters for single-span frames

Where the internal columns are of similar stiffness to the external columns, each
span should be considered as if it were a separate single span frame.

Where the internal columns are significantly more flexible than the external
columns, the height h can be taken from a straight line between the column
bases, as shown in Figure 3.2. A typical example would be a frame using LJBs
for the external columns but UCs for the internal columns.

Where valleys are supported on valley beams, the Sway-check method may be
used, provided that the above limitations are observed. Although there is no
column, column height must be assumed. This height is the distance from the
intersection of the rafters at the valley above the straight line between the
column bases (see Figure 3.2).

3.3 The hIl000 check
3.3.1 General
The stiffness of the frame is assessed by a check on the sway deflection due to
the notional horizontal forces.

The design steps for 'gravity load' cases, as defined in BS 5950-1
Clause 5.5.4.2.2, are given in Section 3.3.2. The design steps for 'horizontal
load' cases, as defined in BS 5950-1 Clause 5.5.4.2.3, are given in
Section 3.3.3.
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Figure 3.1 Geometric parameters for single-span frames 

Where the internal columns are of similar stiffness to  the external columns, each 
span should be considered as if it were a separate single span frame. 

Where the internal columns  are significantly more flexible than the external 
columns, the height h can  be taken from a straight line between the column 
bases, as  shown in Figure 3.2. A typical example would  be a frame using UBs 
for the external columns but UCs  for the internal columns. 

Where valleys are supported on valley beams, the Sway-check  method may  be 
used,  provided that  the above limitations are observed. Although there is  no 
column,  column height must be  assumed. This height is  the distance from the 
intersection of the rafters at the  valley above the straight line between the 
column bases (see Figure 3.2). 

3.3 The h/1000 check 
3.3.1 General 
The stiffness of  the frame is assessed by a check  on the sway deflection due to 
the notional horizontal forces. 

The design steps for ‘gravity load’ cases, as defined in BS 5950-1 
Clause 5.5.4.2.2, are given in Section 3.3.2. The design steps for ‘horizontal 
load’ cases, as defined in BS 5950-1 Clause 5.5.4.2.3, are given in 
Section 3.3.3. 
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Figure 3.2 Geometry of frames (h is measured from the top of the

foundation)

3.3.2 Gravity load cases — design steps
This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using the Sway-check method for gravity loads, as given in
Clause 5.5.4.2.2. The loads considered are those in Load combination 1 (see
Clauses 2.4.1.2 of BS 5950-1) and Crane combination 1 (see Clause 2.4.1.3 of
BS 5950-1).

In the design check, notional horizontal forces are considered. Clause 5.5.4.2.2
states that the notional horizontal deflections, 8, should be calculated using the
bare steel frame alone, ignoring any stiffening effects reducing sway, such as
plan bracing in the roof or roof sheeting. This is because the sway deflection is
acting as an indicator of the sensitivity of the frame to P-delta effects in the
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Figure 3.2 Geometry of frames (h is measured from  the  top of  the 
foundation) 

3.3.2 Gravity  load  cases - design  steps 

This  Section  gives the steps  required  to satisfy Clauses 5.5.2 or 5.5.3 of 
BS 5950-1 using the Sway-check method for  gravity  loads, as given in 
Clause  5.5.4.2.2.  The loads considered  are those in Load combination  1 (see 
Clauses  2.4.1.2 of BS 5950-1) and Crane  combination  1  (see  Clause  2.4.1.3 of 
BS 5950-  1). 

In the design  check, notional horizontal  forces  are  considered.  Clause 5.5.4.2.2 
states that the notional horizontal  deflections, S, should be calculated using the 
bare steel frame  alone,  ignoring any stiffening  effects reducing sway,  such as 
plan  bracing in  the  roof or roof sheeting.  This is because the sway deflection  is 
acting as an indicator of the sensitivity of the frame  to P-delta effects in  the 
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symmetric mode of failure shown in Figure 3.3. In this symmetric mode of
failure, roof plan-bracing or roof sheeting will give very little assistance to the
action of the bare steel frame.

Out-of-plane stability of members must also be checked, as required by
BS 5950-1, Chapters 4 and 5, but is outside the scope of this document.

Note that the gravity load case is not suitable for stability portal frames used
instead of cross bracing, which should be designed as a lateral load case as
Section 3.3.3 or by the Amplified Moment method or Second-order analysis.

An alternative method of checking the frame stiffness using the span to depth
ratio of the rafters is given in Section 3.4.

Design steps for plastic design
1. Check that the geometry of the frame is within the geometrical limits (see

Section 3.2). If all the spans in the frame are satisfactory, the Sway-check
method may be used for this frame.

2. Check the sway stiffness of the frame.

(a) Calculate the notional horizontal forces (see Section 1.6). For this
check (which is a check for the critical buckling ratio, 2cr) 0.5% of
vertical crane loads should be included if applicable.

(b) Apply the notional horizontal forces in-plane (all in one direction) to
the bare steel frame and calculate the column top deflections, 5, as
shown in Figure 3.4.

(c) Check that the column top deflections Sdo not exceed h/bOO, where
h is the height of the column from the top of the foundation to the
point of intersection of the rafter centre-line and the column centre-
line. Note that the stiffness of the cladding (or other structure giving
sway stiffness not arising from the portal frame) must not be
considered when calculating 5.

If all the column deflections in the frame satisfy the above, the Sway-check
method is valid for the frame. In this case, the value of 2r, the required
load factor for frame stability, may be taken as 1.0 for the gravity load
case.
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Figure 3.3 Symmetric mode of failure

symmetric mode of failure shown in Figure 3.3. In  this symmetric mode  of 
failure, roof  plan-bracing or roof sheeting will  give very little assistance to  the 
action of  the bare steel frame. 

Figure 3.3 Symmetric  mode of failure 

Out-of-plane stability  of members must also be checked, as required by 
BS 5950-1, Chapters 4 and 5 ,  but is outside the scope of this document. 

Note that the gravity load case is not suitable for stability portal frames used 
instead of cross  bracing, which should be  designed as a lateral load case as 
Section 3.3.3 or by  the Amplified Moment method or Second-order analysis. 

An alternative method of checking the frame stiffness  using  the span to  depth 
ratio of the rafters is given in Section 3.4. 

Design  steps for plastic  design 

1. Check that the geometry of  the frame  is within  the geometrical limits  (see 
Section 3.2). If  all  the spans in the frame  are satisfactory, the  Sway-check 
method may be used for this frame. 

2. Check the sway stiffness of  the frame. 

Calculate the notional horizontal forces (see Section 1.6). For this 
check (which is a check  for the critical buckling ratio, A,,) 0.5% of 
vertical crane loads should be  included  if applicable. 

Apply the notional horizontal forces in-plane  (all  in  one direction) to 
the bare steel frame  and calculate the column top deflections, 6, as 
shown in Figure 3.4. 

Check that the column top deflections 6 d o  not exceed h/1000, where 
h is the height of the column from the top of  the foundation to  the 
point of intersection of  the rafter centre-line and the column centre- 
line. Note that  the  stiffness  of  the cladding (or other structure giving 
sway stiffness not arising from the portal frame) must not be 
considered when calculating 6. 

If all the column deflections in the frame satisfy  the above, the  Sway-check 
method is valid for the frame. In  this case, the value of A, the required 
load factor for frame stability, may be taken as 1.0 for  the gravity load 
case. 
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3. For frames of three or more bays, check the snap-through stability (see
Section 3.5).

4. Carry out a plastic analysis of the frame.

Apply the gravity loads together with the notional horizontal forces (see
Section 1.6) to the frame. In asymmetric frames, it will generally be
necessary to apply two load cases, one with the NHF in one direction and
the other with the NHF in the other direction to ensure that the most
unfavourable load case is applied.

5. Check the strength of the frame.

Calculate the plastic collapse factor, A (for both directions of NHF where
these have been applied as two load cases), and check that A � 2 (=1.0).

Design steps for elastic design

Design steps 1, 2 and 3 for elastic design are the same as for plastic
design.

4. Carry out an elastic analysis of the frame.

Apply the gravity loads together with the notional horizontal forces to the
frame and calculate the forces and moments around the frame. In
asymmetric frames, it will generally be necessary to apply two load cases,
one with the NHF in one direction and the other with the NHF in the other
direction to ensure that the most unfavourable load case is applied.

5. Check the strength of the frame.

Calculate and check the cross-sectional resistance using Clause 4.8 of
BS 5950-1.

3.3.3 Lateral load cases — design steps
This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using the Sway-check method for horizontal loads, as
Clause 5.5.4.2.3. It is applicable to frames where the applicability of the
Sway-check method has already been confirmed (Steps 1 and 2 of Section
3.3.2). The loads considered are those in Load combination 2 and Load
combination 3 (see Clauses 2.4.1.2 of BS 5950-1) and Crane combination 2 and
Crane combination 3 (see Clause 2.4.1.3 of BS 5950-1).

These load cases are those in which there are externally applied horizontal
forces acting in the plane of the frame, typified by the loads shown in Figure
3.5. It does not include load cases in which the only horizontal forces are the
notional horizontal forces arising from vertical loads on this frame.

6

NHF- r
6

NHF

Figure 3.4 Deflection from notional horizontal forces (NHF)
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Figure 3.4 Deflection from  notional  horizontal  forces (NHFI 

3. For  frames of three or more  bays,  check the snap-through stability (see 
Section  3.5). 

4.  Carry  out  a  plastic  analysis of  the frame. 

Apply  the gravity  loads  together with the notional horizontal  forces (see 
Section 1.6) to  the frame. In asymmetric  frames,  it will generally be 
necessary  to apply two load  cases, one with  the NHF in one direction and 
the other with  the NHF in the other  direction to ensure that the most 
unfavourable  load  case  is  applied. 

5.  Check the strength of the  frame. 

Calculate the plastic  collapse  factor, 3p (for both directions of NHF where 
these have been applied  as two load  cases),  and  check that .2, 2 ;t, (= 1.0). 

Design  steps for elastic  design 

Design  steps  1,  2  and  3  for  elastic design are the same as for plastic 
design. 

4.  Carry out an  elastic  analysis of  the frame. 

Apply the gravity  loads  together with the notional horizontal  forces to  the 
frame  and  calculate the forces  and moments around the frame. In 
asymmetric  frames, it will generally be necessary to  apply two load cases, 
one with the NHF in one  direction and the other with  the NHF in the other 
direction to ensure that the most unfavourable load case  is  applied. 

5 .  Check the strength of the frame. 

Calculate and check the cross-sectional  resistance using Clause 4.8 of 
BS 5950-1. 

3.3.3 Lateral  load  cases - design  steps 

This Section gives the steps  required  to satisfy Clauses 5.5.2  or  5.5.3 of 
BS 5950-1 using the Sway-check method for  horizontal  loads, as 
Clause 5.5.4.2.3. It  is applicable  to  frames where the applicability of  the 
Sway-check method has  already been confirmed (Steps 1  and  2 of Section 
3.3.2). The loads considered  are those in Load combination  2 and Load 
combination  3 (see Clauses  2.4.1..2 of BS 5950-1) and Crane  combination 2 and 
Crane  combination  3 (see Clause  2.4.1.3 of BS 5950-1). 

These load cases  are those in which there are  externally  applied  horizontal 
forces acting in  the plane of  the frame, typified by the loads shown in Figure 
3.5. It does not include load cases in  which  the only horizontal  forces  are the 
notional horizontal forces  arising  from  vertical loads on this frame. 
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The mode of failure is the sway mode shown in Figure 3.6. In this mode, the
sway deflection causes P-delta effects that subject the frame to moments and
forces greater than those calculated by first-order analysis. Therefore, the
resistance of the frame must exceed the resistance required by first-order
analysis.www-

Clause 5.5.4.2.3 states that, when calculating the deflections for the sway case,
the sway stiffness of other structure, plan bracing and roof-sheeting may be
included. The inclusion of the stiffness of the cladding, etc. should, however,
only be considered if it can be guaranteed to remain throughout the life of the
structure. Where sheeting is used to provide stiffness, these structural
requirements must be noted in the Health and Safety File required under the
CDM regulations.

Member out-of-plane stability must also be checked as required by BS 5950-1
Chapter 4 and 5, but is outside the scope of this document.

Design steps for plastic design
1. Calculate the approximate critical buckling ratio for the Sway-check

method, 2, for the frame.

(a) Calculate the notional horizontal forces from the loads applied in the
load combination being analysed (see Section 1.6). For this check
0.5% of vertical crane loads should be included.

(b) Apply the notional horizontal forces in-plane (all in one direction) to
the frame and calculate the column top deflections 8. (As noted
above, the stiffness of any associated structure or cladding that reduces
the column top deflections may be included in the calculation of the
column top deflections.)
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Figure 3.5 Typical externally applied horizontal forces

Figure 3.6 Sway mode of failure
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Figure 3.5 Typical externally applied horizontal forces 

The mode of failure is  the sway mode shown in Figure 3.6. In  this mode, the 
sway deflection causes P-delta effects that subject the frame to  moments  and 
forces  greater than  those calculated by first-order analysis. Therefore, the 
resistance of the frame must exceed the resistance required by first-order 
analysis. 

‘ l  I 

Figure 3.6 Sway mode of failure 

Clause 5.5.4.2.3 states that, when calculating the deflections for the  sway case, 
the sway stiffness of other structure, plan bracing and roof-sheeting  may  be 
included. The inclusion of the  stiffness of the cladding, etc. should, however, 
only be considered if it can be guaranteed to remain throughout the  life  of  the 
structure.  Where sheeting is  used to  provide stiffness, these structural 
requirements must be  noted in the Health and Safety File required under the 
CDM regulations. 

Member out-of-plane stability must also be checked as required by BS 5950-1 
Chapter 4 and 5 ,  but is outside the scope of this document. 

Design  steps for plastic  design 

1. Calculate the approximate critical buckling ratio for the  Sway-check 
method, A,,, for the frame. 

(a) Calculate the  notional horizontal forces  from the  loads  applied  in  the 
load combination being analysed (see Section 1.6).  For this check 
0.5% of vertical crane loads  should be included. 

(b) Apply  the  notional horizontal forces in-plane (all  in  one direction) to 
the frame  and calculate the column top deflections 6. (As noted 
above, the stiffness of  any associated structure or cladding that reduces 
the column top deflections may  be included in the  calculation  of  the 
column top deflections.) 
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h(c) Calculate 2 = —
2006

where h is the height of the individual column.

k is an approximation to the critical buckling ratio for the sway mode
of buckling shown in Figure 2.12. ' is calculated from the sway
deflection caused by application of the notional horizontal forces
derived from this load case.

Where ,% is less than 5.0, the Sway-check method should not be used.

2. Calculate the required load factor Ar for frame stability.

2 r
—

If the loads are such that the axial forces in all the rafters and columns are
tensile, then the required load factor Ar should be taken as 1.0

3. Carry out a plastic analysis of the frame.

Apply the gravity and horizontal loads to the frame, without any notional
horizontal forces.

4. Check the strength of the frame.

(a) Calculate the plastic collapse factor 2 and check that A � 2r.

(b) Check the strength and out-of-plane stability at Ar.

Design steps for elastic design

Design steps 1 and 2 for elastic design are the same as for plastic design.

3. Carry out an elastic analysis of the frame.

Apply the gravity and horizontal loads to the frame without any notional
horizontal forces and calculate the forces and moments around the frame.

4. Check the strength of the frame.

(a) Calculate and check the cross-sectional resistance using Clauses 4.8 of
BS 5950-1 and using amplified moments and forces, taken as the
values given by linear elastic analysis multiplied by Ar.

(b) Check the out-of-plane stability at Ar.

3.3.4 Base stiffness for calculation of ö from the notional
horizontal forces

BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model for the deflection S caused by the notional horizontal forces. It
is important to note that the Sway-check is to check the stiffness of the frame at
ULS, so only the ULS base stiffness values may be used, not the SLS values.
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where h is the height of  the individual column. 

Asc is  an  approximation  to the critical buckling ratio  for the sway mode 
of buckling shown in Figure 2.12. Asc is  calculated  from the sway 
deflection  caused by application of  the notional horizontal  forces 
derived  from  this load case. 

Where Asc is less than 5.0, the Sway-check method should not be used. 

2. Calculate the required load factor  for  frame  stability. 

If  the loads  are  such that the axial forces in all the rafters  and  columns are 
tensile, then the required load factor Ar should be taken as 1 .O 

3. Carry  out  a plastic analysis of  the frame. 

Apply the gravity and horizontal  loads  to the frame, without any notional 
horizontal  forces. 

4. Check the strength of  the frame. 

(a) Calculate the plastic  collapse  factor 4 and  check that 2 Ar. 

(b) Check the strength  and out-of-plane stability at A. 
Design  steps for elastic  design 

Design  steps 1 and 2 for  elastic design are the same  as  for  plastic  design. 

3.  Carry out an  elastic  analysis of the frame. 

Apply  the gravity  and  horizontal  loads  to the frame without any notional 
horizontal  forces and calculate the forces  and moments around the frame. 

4. Check the strength of  the frame. 

(a)  Calculate  and  check the cross-sectional  resistance using Clauses 4.8 of 
BS 5950-1 and using amplified moments and  forces, taken as the 
values given by linear  elastic  analysis multiplied by 4. 

(b)  Check the out-of-plane stability at A. 

3.3.4 Base  stiffness  for  calculation  of 6 from  the  notional 
horizontal  forces 

BS 5950-1  Clause 5.1.3 gives guidance on the  base stiffness that may  be 
assumed in design.  The  provisions  for ULS analysis may  be  used  in  the 
analysis model for the deflection S caused by  the notional horizontal  forces. It 
is important to note that the Sway-check is to check the stiffness of  the frame at 
ULS, so only  the  ULS  base stiffness  values may  be used, not  the SLS values. 
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Therefore, the following base stiffnesses may be used:

Base with a pin or rocker

The base stiffness should be taken as zero in the calculation of 8.

Nominally pinned base
The base stiffness may be taken as 10% of the column stiffness for the
calculation of 8. For the same frame, the base moments transmitted to the
foundation may be taken as zero provided the ULS analysis of the frame, from
which the moments and forces around the frame are found, assumes that the
bases are pinned.

Nominal semi-rigid base
A nominal base stiffness of up to 20% of the colunm stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis. Therefore, the base stiffness may
be taken as 20% of the column stiffness for the calculation of 6, provided that
the foundations are designed to carry the moments from the ULS global analysis
for every load case; there is a cost implication.

Nominally rigid base
The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases. Therefore,
the base stiffness may be taken as equal to the column stiffness for the
calculation of 6. Note that the bases should not be assumed to be rigid for this
check.

3.4 The formula method
3.4.1 General
The Lb/D formula is a stiffness check which is approximately equivalent to the
Sway-check by calculating deflections in Section 3.3. The stiffness of the frame
is assessed by a formula. This formula was derived for regular frames with
columns at every valley and with roof load as the only imposed load. Thus the
application of this method is restricted to frames that are not subject to loads
from crane gantries or other concentrated loads larger than those from purlins.

3.4.2 Gravity load cases — design steps
This check is for load cases with no externally applied horizontal loads other
than the notional horizontal forces (NHF).

Note that this check is not suitable for stability portal frames used instead of
cross-bracing, which should be designed for a lateral load case (see
Section 3.4.3) or by the Amplified Moment method or Second-order analysis.

Design steps for plastic design and elastic design
The design steps for both plastic and elastic design are the same as for the
h/1000 method (see Section 3.3.2), except that the check on sway stiffness,
Step 2, is replaced by a limitation on the span to depth ratio of the rafters,
based on an expression that involves the geometry of the frame, the stiffness of
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Therefore, the following base stiffnesses may  be used: 

Base with  a pin or  rocker 

The base stiffness should  be  taken as  zero in  the calculation of 6. 

Nominally  pinned  base 

The base stiffness may  be  taken as 10% of  the column stiffness for the 
calculation of 6. For the same frame, the  base moments transmitted  to  the 
foundation may be  taken as zero provided the ULS analysis of  the frame,  from 
which the moments and  forces around the frame  are found, assumes that  the 
bases are pinned. 

Nominal  semi-rigid  base 

A nominal base stiffness of  up  to 20% of  the column stiffness may  be  assumed 
for the ULS calculations, provided that  the foundation is  designed for the 
moments and  forces obtained in the analysis. Therefore, the  base stiffness may 
be taken as  20% of the column stiffness for the calculation of 6, provided that 
the foundations are designed to carry the moments from the ULS global  analysis 
for  every load case; there is a cost implication. 

Nominally  rigid  base 

The base stiffness should be taken as equal to  the column stiffness and the 
foundation must be designed to resist moments from all  load cases. Therefore, 
the base stiffness may  be taken as equal to  the column stiffness for the 
calculation of 6. Note  that  the bases should  not  be assumed to  be rigid for this 
check. 

3.4 The formula  method 
3.4.1 General 

The LblD formula is a stiffness check which is approximately equivalent to  the 
Sway-check by calculating deflections in Section 3.3. The stiffness of  the frame 
is assessed by a formula.  This formula was derived for regular frames with 
columns at every valley and with  roof load as the only imposed load. Thus the 
application of this method is restricted to  frames that are not subject to  loads 
from  crane  gantries or other concentrated loads larger than  those from purlins. 

3.4.2 Gravity  load  cases - design  steps 

This  check is for load cases with no externally applied  horizontal  loads other 
than  the  notional horizontal forces  (NHF). 

Note that this check is not suitable for stability portal frames used  instead  of 
cross-bracing, which should be designed for a lateral  load  case  (see 
Section 3.4.3)  or by  the Amplified Moment method or Second-order analysis. 

Design  steps  for  plastic  design  and  elastic  design 

The design steps for both plastic and elastic design are the  same as for the 
h/1000 method (see Section 3.3.2), except that the check on  sway stiffness, 
Step 2, is replaced by a limitation on  the span to  depth ratio of  the rafters, 
based on  an  expression that involves the geometry of  the frame, the  stiffness of 
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the columns and rafters and the strength of the rafters. Step 2 of Section 3.3.2
becomes:

Check that the span to depth ratio of the rafter satisfies:

p
D Qh 4+PLr/L Pyr

in which:

2D
Lb = L— h L]

D +Dh

21 rLi
p = —s-

[—]
for a single-span frame

'r h

' [i
p = —s-- — for a multi-span frame

'r [hi
.0 is the arching ratio == Wr /W0

where:

D is the cross-section depth of the rafter

D1 is the additional depth of the haunch (see Figure 3.7)

D is the depth of the rafter, allowing for its slope (see Figure 3.7)
h is the main column height' is the in-plane second moment of area of the colunm (taken as zero if

the column is not rigidly connected to the rafter, or if the rafter is
supported on a valley beam)

I is the in-plane second moment of area of the rafter

L is the span of the bay

Lb is the effective span of the bay

is the length of the haunch (see Figure 3.7)

L1 is the total developed length of the rafters see (Figure 3.8)

p is the design strength of the rafters in N/mm2

W0 is the value of W for plastic failure of the rafters as a fixed-ended
beam of span L (see Figure 3.9)

W is the total factored vertical load on the rafters of the bay (see Figure
3.9).

If the two columns or the two rafters of a bay differ, the mean value of 'C"r
should be used.

If the haunches at each side of the bay are different, the mean value of Lb
should be used.
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the columns  and  rafters and the strength of the rafters. Step  2  of Section 3.3.2 
becomes: 

Check that  the span to depth ratio of the rafter satisfies: 

in which: 
r -l 

R is the arching ratio == W, / W ,  

where: 

is the cross-section depth of  the rafter 

is the additional depth of the haunch (see Figure 3.7) 

is the depth of the rafter, allowing for its slope (see Figure 3.7) 

is the  main column height 

is the in-plane second moment of area of the column (taken as zero if 
the column is not rigidly connected to  the rafter,  or if the rafter is 
supported on a valley beam) 

is the in-plane second moment of area of the rafter 

is the span of the bay 

is  the effective span of  the  bay 

is  the length of  the haunch (see Figure 3.7) 

is the total developed length of  the rafters see (Figure 3.8) 

is the design strength of  the rafters in N / m 2  

is the value of W, for plastic failure of  the rafters as a fixed-ended 
beam of span L (see Figure 3.9) 

is the total factored vertical load on the rafters of the bay (see Figure 
3.9). 

If  the  two columns or the  two rafters of a bay differ, the mean value  of ZJZr 
should be used. 

If the haunches at each side of the  bay are different, the mean value  of L, 
should be used. 
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The strength checks for both plastic and elastic design are carried out in the
same way as Steps 3 and 4 of the h/1000 method.

J4L
Figure 3.7 Dimensions of a haunch
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L
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4

Figure 3.9 Loads for calculating the arching ratios
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Figure 3.8 Developed length of rafter

The  strength  checks for both plastic and elastic 
same way as  Steps 3 and 4 of the h/1000 method. 

Figure 3.7 Dimensions of  a haunch 

Figure 3.8 Developed length of  rafter 

design  are  carried out in the 
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Figure 3.9 Loads for  calculating  the  arching  ratios 
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3.4.3 Lateral load cases — design steps
Lateral load cases are load cases in which there are externally applied horizontal
forces acting in the plane of the frame. The formula method is not for load
cases in which the only horizontal forces are the notional horizontal forces
arising from vertical loads applied to the portal. The mode of failure is that
shown in Figure 3.6. In this mode, the sway deflection causes P-delta effects as
subject the frame to moments and forces greater than those calculated by
first-order analysis.

Design steps for plastic design and elastic design
The design steps for both plastic and elastic design are the same as for the
hIl000 method (see Section 3.3.3), except that approximate critical buckling
ratio for the Sway-check method, is calculated from a formula that involves
the same parameters as those used for the Lb/D formula for the gravity load case
(see Section 3.4.2). Step 1 of the method given in Section 3.3.3 becomes:

Calculate the approximate critical buckling ratio

2 — 220DL p 2751-
ThL 4+/iLIL

Where ' is less than 5.0, the Sway-check method should not be used.

If the wind loads are such that the axial forces in the rafters are tensile, then the
required load factor 2r should be taken as 1.0 because tensile forces cause no
additional destabilising forces.

3.5 Snap-through check
The snap-through check, in BS 5950-1 Clause 5.5.4.3, is to check that internal
spans of a multi-span frame are adequately modelled in a first-order analysis.

In pitched-roof portals, gravity loads applied to the rafters cause the ends of the
rafters to spread as the rafter deflects downwards, see Figure 3.10. In
multi-span frames, the internal spans are restricted from spreading by the
stiffness of the external spans. The horizontal reaction from the external spans
coupled with the rise of the rafters in the internal span causes an arching action
in the internal span. This arching action means that the vertical load capacity is
greater than the capacity due to bending alone of the rafters. However, this
increased capacity depends on the restraint from the external spans. This
restraint will not be available if the stiffness of the frame is too low.
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Figure 3.10 Rafter spread in multi-span frames

3.4.3 Lateral  load  cases - design  steps 

Lateral load cases  are load cases in which there  are  externally  applied horizontal 
forces acting in  the plane of  the frame.  The  formula method is not for load 
cases in which the only horizontal  forces  are the notional horizontal  forces 
arising  from  vertical  loads  applied  to the portal.  The mode  of failure is  that 
shown in Figure  3.6. In this  mode, the sway deflection  causes P-delta effects  as 
subject the frame to moments and forces  greater than those calculated by 
first-order  analysis. 

Design  steps for plastic  design and elastic  design 

The design steps  for both plastic  and  elastic design are the same as for the 
h/1000 method (see Section 3.3.3), except that approximate  critical buckling 
ratio  for the Sway-check  method, A,,, is calculated  from  a  formula that involves 
the same parameters  as those used for the L,lD formula  for the gravity load case 
(see  Section  3.4.2).  Step I of  the method given in Section 3.3.3 becomes: 

Calculate the approximate  critical buckling ratio 

Where ,lsc is  less than 5.0, the Sway-check method should not be used. 

If the  wind loads  are  such  that the axial  forces in the rafters  are  tensile, then the 
required load factor ,lr should be taken as 1.0 because tensile  forces  cause no 
additional  destabilising  forces. 

3.5 Snap-through check 
The  snap-through  check, in  BS 5950-1 Clause  5.5.4.3,  is  to  check that internal 
spans of a  multi-span  frame  are  adequately modelled in a  first-order  analysis. 

In pitched-roof  portals,  gravity  loads applied to the rafters  cause the ends of  the 
rafters  to  spread  as the rafter  deflects  downwards, see Figure  3.10. In 
multi-span  frames, the internal  spans  are  restricted  from  spreading by  the 
stiffness of the external  spans.  The  horizontal reaction from the external spans 
coupled with the rise of  the rafters in the internal span causes  an  arching action 
in the internal  span.  This  arching  action means that the vertical load capacity is 
greater than the capacity due  to bending alone of  the rafters.  However, this 
increased  capacity  depends  on the restraint  from the external  spans.  This 
restraint will not be available if  the stiffness of  the frame  is  too  low. 

Figure 3.10 Rafter spread in multi-span  frames 
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The formula in BS 5950-1 Clause 5.5.4.3 defines a limit to the span to depth
ratio of the rafter to ensure adequate stiffness, expressed as:

Lb 22(4+L!h) I 275— —tan28
D 4(12—1) 'r Pyr

in which the symbols are as defined in Section 3.4, except for 8 which is
defined below.

8 is the slope of the rafters for a symmetrical ridged span.

9 = tan' (2hr!L) for other roof shapes

where:

hr is defined in Figure 3.1 and Figure 3.2.

Where the arching ratio 12 is less than 1.0, no limit need be placed on Lb/D
because the vertical load capacity from bending alone is more than sufficient.

The Lb/D formula in the 2000 issue of BS 5950, given above, differs slightly
from the 1990 issue in that £2 appears only once in the formula in 2000 issue.
This change has been made to ensure that the elastic critical buckling factor, 2cr
remains equal to or greater than 10, to ensure that the second-order effects are
insignificant.

The Snap-through check is most likely to be significant where the rafters in
internal spans have a lower plastic moment of resistance than required for
external spans. The lower moment resistance would cause more of the vertical
loads to be carried by arching action, which creates significant axial thrusts in
the rafters and could cause snap-through (see Section 2.4.3).
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The  formula in BS 5950-1  Clause  5.5.4.3  defines  a  limit to  the span to depth 
ratio of  the rafter  to  ensure adequate stiffness,  expressed  as: 

D 

in which the symbols  are  as  defined in Section 3.4, except  for B which is 
defined  below. 

B is the slope of  the rafters  for  a  symmetrical ridged span. 

B = tan-' (2h)L) for  other roof shapes 

where: 

h, is  defined in Figure 3.1 and Figure 3.2. 

Where the arching  ratio R is  less than 1.0, no  limit need be placed on L,lD 
because the vertical load capacity  from  bending  alone is more than sufficient. 

The LblD formula in the 2000 issue of BS 5950, given above,  differs slightly 
from the 1990 issue in that l2 appears  only  once in  the formula in 2000  issue. 
This  change has been made  to ensure that the elastic  critical buckling factor, / lc , , ,  

remains  equal to or  greater than 10, to ensure that the second-order  effects  are 
insignificant. 

The  Snap-through  check is  most likely to be significant where the rafters in 
internal  spans have a  lower plastic moment of resistance than required  for 
external  spans.  The lower moment resistance would cause  more of  the vertical 
loads  to be carried by arching  action, which creates  significant axial thrusts in 
the rafters  and  could  cause  snap-through (see Section  2.4.3). 
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4 AMPLIFIED MOMENTS METHOD

4.1 Application — design steps
The amplified moment method is appropriate where the frame does not meet the
Sway-check limitations. It permits the calculation of the load factor for frame
stability, AT, which is used to account for the deflections of the frame under
load. The method requires the determination of the lowest critical buckling
ratio, 2cr, for the particular load case on the frame. No method of determining
Acr is given in BS 5950-1.

There is a limit on the application of the method. If AT < 4.6, the frame is too
flexible to be designed using this method. If Açr � 10, the frame is considered
to be 'stiff' and AT is taken as 1.0.

This method is not suitable in general for tied portals because it does not
account for non-linearity in the rafter-tie system (see Section 5.3.5).

This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1, using the Amplified moments method, as in Clause 5.5.4.4 of
BS 5950-1.

In BS 5950-1, the critical buckling ratio, 2 from the lowest mode of buckling
is required, as it is possible to produce unconservative designs if higher modes
are used. The lowest mode is usually the sway mode. The Amplified Moments
Method is most accurate when the collapse mode of the frame is the same as the
buckling mode from which 2r is derived. Therefore, the Amplified Moments
method is most accurate for load cases causing deflection in a sway mode, as
exemplified by Figure 2.6. For load cases causing deflection in the symmetrical
mode, the Amplified Moment method is relatively conservative because the
deflection mode is similar to a higher mode of buckling.

The Snap-through check of Clause 5.5.4.3 of BS 5950-1 does not need to be
applied when using the Amplified moment method.

Out-of-plane stability members must also be checked as required by BS 5950-1
Chapters 4 and 5, but this is outside the scope of this document.

Design steps for plastic design
1. Calculate the critical buckling ratio, for the lowest buckling mode from

the load case being analysed. See Section 4.3.3 or Section 4.3.4.

2. Calculate the required load factor for frame stability, AT:

jf2cr� 10 2r = 1.0

0.92if 10 > 2cr�4.6 Ar =
2cr —1

Note: if Ac, < 4.6 the method is not applicable.

3. Carry out a plastic analysis of the frame.
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4.1 Application - design steps 
The amplified moment  method is appropriate where 

METHOD 

the frame does not meet  the 
Sway-check limitations. It permits the calculation of  the load factor for frame 
stability, A, which is  used to account for the deflections of  the frame  under 
load. The  method requires the determination of  the lowest critical buckling 
ratio, A,,, for the particular load case on the frame.  No  method of determining 
A,, is given in BS 5950-1. 

~~ ~ 

There is a limit on the application of  the method. If Acr < 4.6, the frame is too 
flexible to be designed using  this method. If A,, 2 10, the frame is considered 
to be 'stiff' and is taken as 1.0. 

This  method is not suitable in general for tied portals because it does not 
account for non-linearity in  the rafter-tie system (see Section 5.3.5). 

This Section gives the steps required to satisfy Clauses 5.5.2  or  5.5.3 of 
BS 5950-1, using the Amplified  moments  method, as in Clause 5.5.4.4 of 
BS 5950-1. 

In BS 5950-1, the critical buckling ratio, A,, from the lowest mode of buckling 
is required, as  it is possible to produce unconservative designs if higher modes 
are used. The lowest mode  is usually the  sway mode.  The  Amplified  Moments 
Method is most accurate when  the collapse mode of the frame is the same as the 
buckling mode  from which IC, is derived. Therefore, the Amplified  Moments 
method is most accurate for load cases causing deflection in a sway mode, as 
exemplified by Figure 2.6.  For load cases causing deflection in the symmetrical 
mode, the Amplified  Moment  method is relatively conservative because the 
deflection mode is similar to a higher mode of buckling. 

The  Snap-through  check of Clause 5.5.4.3 of BS 5950-1 does not need to be 
applied when  using  the Amplified  moment  method. 

Out-of-plane stability members must also be checked  as required by BS 5950-1 
Chapters 4  and 5 ,  but this is outside the scope of  this document. 

Design  steps for plastic  design 

1. Calculate the critical buckling ratio, A,,, for the lowest buckling mode from 
the  load case being analysed. See Section 4.3.3  or Section 4.3.4. 

2. Calculate the required load factor for frame stability, h: 
if Ac, 2 10 I ,  = 1.0 

Note: if IC, < 4.6 the method is not applicable. 

3. Carry out a plastic analysis of  the frame. 
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Apply the loads to the frame. For load combinations other than Load
combinations 1 (see Clause 2.4.1.2 of BS 5950-1), the notional horizontal
forces need not be applied (see Clause 2.4.2.4 of BS 5950-1). Where NHF
are applied to asymmetric frames or symmetric frames with asymmetric
loading, it will generally be necessary to apply two load cases, one with the
NHF in one direction and the other with the NHF in the other direction to
ensure that the most unfavourable load case is applied.

4. Check the strength of the frame

(a) Calculate 2,,, and check that 2,,, � 2.

(b) Check the member strength and out-of-plane stability at

Design steps for elastic design

Design steps 1 and 2 for elastic design are the same as for plastic design.

3. Carry out an elastic analysis of the frame, applying the loads as for plastic
design.

Calculate the forces and moments around the frame using linear elastic
analysis (first-order analysis).

4. Check the strength of the frame

(a) Where ,% > 1.0, calculate amplified moments and forces, taken as the
values given by linear elastic analysis multiplied by Ar.

(b) Check the cross-sectional resistances using the amplified moments and
forces using BS 5950-1 Clauses 4.8.

4.2 Background to method
The Amplified moment method is based on the Merchant-Rankinet3'4'5'6'71
equation as modified by Woodt81. It is the same method as used for plastic
design of multi-storey frames in Clause 5.7 of the 1990 issue of BS 5950-1.

The Merchant-Rankine equation for predicting the load factor against failure,
accounting for second-order effects, is:

1 1 1=
2cr 2p 2f

where:

2 is the elastic critical buckling factor =Vcr/VULS

is the plastic collapse factor = VPI/VULS

A is the load factor against failure, accounting for second-order stability
effects = VfIV,,s

in which:

V is the elastic critical buckling load of the lowest mode of the bare
frame

V1 is load to cause plastic collapse of the frame in the absence of second
order stability effects
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Design steps 1  and 2 for elastic design are the same as for plastic design. 

3. Carry  out an elastic analysis of  the frame, applying the  loads as  for plastic 
design. 

Calculate the forces and moments around the frame using linear elastic 
analysis (first-order analysis). 

4. Check the strength of the frame 

(a) Where 4 > 1.0, calculate amplified moments and  forces, taken as the 
values given by linear elastic analysis multiplied  by 4. 

(b) Check the cross-sectional resistances using the amplified moments  and 
forces using BS 5950-1 Clauses 4.8. 

4.2 Background to  method 
The Amplified moment method is based on the Mer~hant-Rankine[~~~~~~~~'~ 
equation as modified by  Wood[81.  It  is  the same method as used for plastic 
design of multi-storey frames in Clause 5.7 of  the 1990 issue  of BS 5950-1. 

The Merchant-Rankine equation for predicting the load factor against failure, 
accounting for second-order effects, is: 

1 1 1  -+-=- 
'cr 'p ', 

where: 

;l,, is the elastic critical buckling factor = V,, /V,,, 

A, is  the plastic collapse factor = V,,/V,,, 

A, is the  load factor against failure, accounting for second-order stability 
effects = V,/V,, 

in which: 

V,, is the elastic critical buckling load of  the lowest mode  of  the  bare 
frame 

V,, is load to cause plastic collapse of  the frame in the absence of  second 
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Vf is the failure load accounting for second-order stability effects

VULS is Ultimate Limit State load for the load case being considered.

Note that V differs from VULS in that V1 is the load that the frame can carry at
plastic collapse (according to first order calculations) whereas VULS is the load
that is applied at ULS.

The distribution of load in Vcr, VlD and Vf should be the same as the distribution
of load in V5.

For 2 � 1.0, the Merchant-Rankine equation reduces to:

22 � cr

21
Wood18 recommended that the beneficial effects of cladding and strain
hardening should be allowed for by the following modified version of the
Merchant-Ranking criterion:

2f=2P(0.9+2p/2cr)

This equation can be re-written in the form of the Merchant-Ranking equation:

1 0.9 1
—

2 2p 2r
As explained in Kirby and Nethercot131, this can be expressed for Xç � 1.0 as the
requirement that:

0.92For 10 > 2cr � 4.6, 2, �
2cr 1

in which 2cr is taken as the value for the lowest buckling mode of the bare
frame.

This requirement is generalised in Clause 5.5.4.4 of BS 5950-1 as:

AT = 0.9 'icr /(Acr 1)

so that it can be applied to both plastic and elastic design.

4.3 Calculation of XC, for BS 5950-1
4.3.1 General
The value of 2cf for use in Clause 5.5.4.4 must be the true value, not the
approximate value derived from the formulae in Chapters 2 or 5 of BS5950-1.
The elastic critical buckling load Vcr or the elastic critical buckling factor 2cr for
the first mode will be available in numerous software packages that perform
elastic analysis. The value of 2cr is calculated for the frame assuming it is
entirely elastic and that no plastic hinges exist.

The value of 2cr depends on the magnitude of the applied load. Therefore,
unless the lowest value of 2cr from all load combinations is used throughout, the
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V, is the failure load accounting for  second-order stability effects 

V,,, is  Ultimate  Limit  State load for the load case being considered. 

Note that V,, differs  from V,,, in that V,, is the load that the frame  can  carry  at 
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0.9Acr 

P -  
'cr -1  

in which Acr is  taken  as the value for the lowest buckling mode  of  the bare 
frame. 

This  requirement  is  generalised in Clause 5.5.4.4 of BS 5950-1  as: 

/2, = 0.9 A,, /(Acr -1) 

so that it can be applied to both plastic and elastic  design. 

4.3 Calculation of h,, for BS 5950-1 
4.3.1 General 

The value of Acr for use in Clause 5.5.4.4 must be  the true  value, not  the 
approximate value derived  from the formulae in Chapters 2 or 5 of BS5950-1. 
The  elastic  critical buckling load V,, or the elastic  critical buckling factor Acr for 
the first mode  will  be available in numerous  software  packages that perform 
elastic  analysis.  The value of ACT is calculated  for the frame assuming i t  is 
entirely  elastic and that no plastic hinges exist. 

The value of Acr depends on the magnitude of  the applied  load.  Therefore, 
unless the lowest value of Acr from all  load combinations is used throughout, the 

35 



value of 2cr used in the equation for 2 must be calculated for each load
combination, giving different values of 2r for each load combination.

4.3.2 Structural details that lower the value of A,
The details of frames can affect the stability significantly. Where connections
are not stiff moment resisting connections, or where the arrangement of a frame
is irregular, the effects on stability should be carefully considered.

Portals are sometimes detailed with pin-ended props serving as the internal
columns. A pin-ended prop tends to destabilise the whole structure because any
lateral displacement causes the prop to induce an additional lateral load, instead
of the restoring shear that would be induced by a continuous column, (see
Davies5'61). Therefore, any pin-ended members must be correctly modelled as
pin-ended.

Valley beams do not provide any stabilising effect to the whole structure, thus
they should be modelled accordingly, e.g. as sliding supports. If a valley beam
is free to twist at the frame it supports and if there is no lateral restraint to the
top flange at this point, then the valley beam will act as a very short pin-ended
prop and destabilise the frame, as discussed by Davies.

4.3.3 Computer solutions for ?.c,

Computer solutions will normally be preferable for design office use.

The most obvious differences between the various available computer solutions
are the differences in the output. The principal differences are the number of
buckling modes calculated and the output of the buckling mode shapes.

The buckling modes may be expressed as loads, Vcr, or as the ratio of (buckling
load)/(applied load), 2, as explained in Section 2.3. Only the first buckling
mode is required for the Amplified Moment method. However, it can be
helpful to the designer to know the mode shape of higher modes if 2cr is
unpleasantly low. The mode shape helps to show how and where to stiffen the
structure.

4.3.4 Solutions without a computer

Although a computer solution will normally be preferable, stability functions
can be used to calculate the elastic critical buckling loads of frame structures.
Unfortunately, a rigorous solution is long and complicated.

For hand calculations using stability functions, acceptable approximations may
be introduced by making the following assumptions:

(i) The elastic critical buckling load is not affected by the distribution of
transverse load along the members. Only the axial loads need be
considered. This is an old and well-respected assumption.

(ii) The maximum axial load in each member is assumed to act along its full
length. This is a conservative assumption.

(iii) The stiffening effect of haunches is ignored. This is a conservative
assumption.

Axial loads should be calculated from an elastic analysis. They may be
calculated from standard results, as illustrated in References 9, 10, 11,

36
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can be used to calculate the elastic critical buckling loads of frame structures. 
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transverse load along the members. Only  the  axial  loads  need  be 
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(ii) The maximum axial load  in each member is assumed  to  act  along  its full 
length. This is a conservative assumption. 

(iii)  The stiffening effect of haunches is ignored. This is a conservative 
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Axial  loads should be calculated from  an elastic analysis. They may  be 
calculated from standard results,  as illustrated in References 9, 10, 11, 
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assuming fuiiy pinned/fixed bases for the buckling analysis of frames with
nominally pinned/fixed bases.

To reduce the calculation to a simple process suitable for design office use,
Davies5'6 used stability functions to produce simple formulae to calculate the
approximate buckling load of portal frames with pinned or infinitely rigid bases.
The original work by Davies on stability of portal frames was extended by
King21 to account for the partial fixity of nominally pinned bases and the slight
flexibility of nominally rigid bases. The work of Davies and King is
summarised in Section 4.4 below.

The formula in BS 5950-1, Clause 2.4.2.6, is not valid for single-storey portals
as it ignores the compression in the rafters. That equation is intended for
multi-storey buildings, not single-storey pitched-roof portals.

4.3.5 Base stiffness for calculation of X,
BS 5950-1, Clause 5.1.3, gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model for 2cr. It is important to note that the Amplified Moment
method uses the stiffness of the frame at ULS, so only the ULS base stiffness
values may be used, not the SLS values.

Therefore the following base stiffnesses may be used:

Base with a pin or rocker

The base stiffness should be taken as zero in the calculation of 2cr•

Nominally pinned base
The base stiffness may be taken as 10% of the colunm stiffness for the
calculation of 2c For the same frame, the base moments transmitted to the
foundation may be taken as zero, provided that the ULS analysis of the frame,
from which the moments and forces around the frame are found, assumes that
the bases are pinned.

Nominal semi-rigid base
A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis. Therefore, for the calculation of

the base stiffness may be taken as 20% of the column stiffness but at the
cost of designing the foundations to carry the moments from the ULS global
analysis for every load case.

Nominally rigid base
The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases. Therefore,
the base stiffness may be taken as equal to the column stiffness for the
calculation of Note that the bases should not be assumed to be rigid for this
check.

The above assumptions have been used in deriving the approximate formulae for
2cr given in Section 4.4.
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4.4 Simplified hand solutions for Xcr
4.4.1 General
This section is from Davies5'6'7 with the extensions of Davies' work to other
base conditions by King'2.

In this method, the frame is considered as a series of sub-divisions (see Figure
4.1) including:

(i) Rafter pairs (see Section 4.4.2).

(ii) External column + rafter (see Section 4.4.3).

(iii) Internal column + rafter each side (see Section 4.4.4).

(iv) Equivalent frame for frames with props or valley beams (see
Section 4.4.5).

For each ULS load combination analysed, 2cr should be found for each of the
above sub-divisions and the lowest 2cr should be used throughout the structure
for that particular load combination. (The very lowest A. could be used for all
load combinations, but it would result in a conservative design).

Column and rafter loads should be the values calculated by elastic analysis,
which may be found by first-order computer analysis or by the formulae in
reference books9'°'.

,lnternal column
External column + rafter each side

rafter r

I
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Figure 4.1 Sub-divisions of frames for analysis without computer

4.4 Simplified hand solutions for L 
4.4.1 General 

This section is from D a v i e ~ ' ~ , ~ . ~ '  with  the extensions of Davies' work to  other 
base conditions by  King''']. 

In  this method, the frame is considered as a series of  sub-divisions  (see Figure 
4.1) including: 

(i)  Rafter  pairs (see Section 4.4.2). 

(ii) External column + rafter (see Section 4.4.3). 

(iii) Internal column + rafter each side (see Section 4.4.4). 

(iv) Equivalent frame for  frames with props or valley beams (see 
Section 4.4.5). 

For each ULS load combination analysed, A,, should  be  found for each  of  the 
above sub-divisions and the lowest Acr should  be  used throughout the structure 
for that particular load combination. (The very lowest Ar could be  used for all 
load combinations, but it  would  result  in a conservative design). 

Column  and rafter loads should be  the  values calculated by elastic analysis, 
which may  be found by first-order computer analysis or by  the  formulae  in 
reference b o ~ k s [ ~ , ~ ~ ~ l l ~ .  

r - - - - - - - - - - - -  
Rafter  pairs 

External column 
Internal column 

l 
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I l 
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Figure 4.1 Sub-divisions of frames for  analysis without computer 
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4.2.

where:

2cr

as:

2cr =

3E1

1
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4.4.2 Rafter pairs
This Section checks the 'rafter pair' sub-divisions of the structure.

It checks that the 'arch' formed by each rafter pair does not collapse; see Figure

The theory is due to Horne'3' and forms the basis of the rules of Clause 5.5.4.3
of BS 5950-1. It is re-expressed by Davies71.

For roof slopes in the range 0 � 6 � 200,

2cr [5s(4+L/h)] 1+—s- tan2O
Lb 'r Pyr

Lb is the effective span L—L1,

and other symbols are as defined in Section 3.4.2, except for 8 which is defined
in Section 3.5.

Figure 4.2 Arching failure of rafters

4.4.3 External column and rafter
This checks the 'external column and rafter' sub-divisions of the structure. The
theory is due to Davies, but modified to include an explicit column base
stiffness in (b) and (c) below.

(a) Truly pinned bases, or bases with rockers, as Clause 5.1.3.1 of
BS 5950-1.

( 1.2s a3PrS+I 1+— Ic'
[ R)

This may be expressed in terms of the rafter and column Euler buckling loads

r +(4+3.3R)I PC
L r.crit J c.crit J

4.4.2 Rafter  pairs 

This Section checks the ‘rafter pair’ sub-divisions  of  the structure. 

It checks that the ‘arch’ formed by each rafter pair does not collapse; see Figure 
4.2. 

The theory is due  to Horne[13] and  forms the  basis  of  the rules of Clause 5.5.4.3 
of BS 5950-1. It is re-expressed by  DaviesL7I. 

For roof slopes in the  range 0 I 8, I 20”, 

where: 

Lb is the effective span L-L,, 

and other symbols are  as defined in Section 3.4.2, except for 19 which  is  defined 
in Section 3.5. 

Figure 4.2 Arching  failure of rafters 

4.4.3 External column and  rafter 

This checks the ‘external column and rafter’ sub-divisions  of  the structure.  The 
theory is due to  Davies, but modified  to  include an explicit column base 
stiffness in (b) and (c) below. 

(a) Truly  pinned bases, or bases with rockers, as Clause 5.1.3.1 of 
BS 5950-1. 

3EI 
A C T  = 

This may  be expressed in terms of the rafter and column Euler buckling loads 
as : 

1 
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(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1.

2 — (4.2+0.4R)EIr
CF

—

This may be expressed in terms of the rafter and column Euler buckling loads
as:

(i +o.1R)
P (p

+ (2.9 + 2.7R)I
'r.crit PC.Crit

(c) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1

2cr
5E(l0+0.8R)

5Ps2 Ph2
+(2.6R+4)

'C

This may be expressed in terms of the rafter and column Euler buckling loads
as:

= (1+o.o8R)

+(o.8+o,52R)
'r.crit 1c.crit

Where (for the above expressions):

E is the Young's modulus of steel 205 kN/mm2

Jr is the rafter inertia in the plane of the portal

1 is the column inertia in the plane of the portal

s is the rafter length along the slope (eaves to apex)

h is the column height

IC

R — column st?ffness — h — JcS

rafter stiffness 1rh
S

P is the axial compression in column from elastic analysis

Note: This dffers from BS 5950-1 notation which defines P. as the capacity
of the compression member.

Pr is the axial compression in rafter from elastic analysis

it2 El
Pcr,I =

2

C = Euler buckling load of the column
Ii
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(b) Nominally  pinned bases, as Clause 5.1.3.3 of BS 5950-1. 

(4 .2 + 0 . 4 R ) E I ,  
‘cr = 

I .  

This may be expressed in terms of  the rafter  and column Euler buckling loads 
as : 

(1 + 0 .1R)  

(c) Nominally  rigid  bases, as Clause 5.1.3.2 of BS 5950-1 

5 E(10 + 0.8 R )  [y] + (2.6R + 4)[%] 

‘cr 

This may  be expressed in terms of the rafter and column Euler buckling  loads 
as : 

(l + 0.08R) 
\ / \ 

Where (for the above expressions): 

is the Young’s modulus  of  steel = 205 kN/mm2 

is  the rafter inertia in the plane of  the portal 

is the column inertia in  the plane of  the  portal 

is  the rafter length along the slope (eaves to  apex) 

is the column height 

rafter stiffness 

is the axial compression in column from elastic  analysis 

Note: This d@ers from BS 5950-1 notation which defines Pc as the capacity 
of the compression member. 

P,. is  the  axial compression in rafter from elastic analysis 

n 2  E I ,  

h 
P,.,.,,, = ~ = Euler buckling  load of the  column 
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2j
Prc,,I =

2

r = Euler buckling load of the rafter.

4.4.4 Internal column and rafter each side
This checks the 'internal column and rafter' sub-divisions of the structure. The
theory is as in Section 4.4.3 but modified for internal columns.

(a) Truly pinned bases, or bases with rockers, as Clause 5.1.3.1 of
BS 5950-1

2
1

cr
P, P P

R + rr
Rr +(4r +3.3R2 )

.crit 'rr.crit 'c.crit

which, in the case of identical rafter forces, sections and lengths gives:

2cr
1

P P
÷(4+3.3R2)

r.crit 1c.crit

(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1

2cr = (1+o.1R2))
P

IR +1 _!L_ I'r +(2.9+2.7R2 )i
C

1're .crit ) rr.crit ) c.crit

which in the case of identical rafter forces, sections and lengths gives

2cr = (i+o.i2)

+(2.9+2.7R2 )
c

1r.crit ) 'c.crit

(c) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1

2cr p
(1+o.o8R2)

R1 +
rr Rr + (0.8 + 0.52R2 )

.crit rr.crj( 'c.crit

which, in the case of identical rafter forces, sections and lengths gives

2cr = (1+o.8R2)

+ (0.8 + 0.52R2 )
. 'r.crit 'c.crit

The symbols for the above expressions are the same as in Section 4.4.3, except:

is the axial compression in left-hand rafter from elastic analysis

P,. is the axial compression in right-hand rafter from elastic analysis
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EI, 
P,,,.,, = ~ = Euler buckling load of  the rafter. 

S 
2 

4.4.4 Internal  column  and  rafter  each side 

This  checks the ‘internal column and rafter’ sub-divisions of the structure.  The 
theory is as in Section 4.4.3 but modified for internal columns. 

(a) Truly  pinned bases, or  bases with rockers, as Clause 5.1.3.1 of 
BS 5950-1 

1 
\ / \ / \ 

which, in the case of identical rafter  forces, sections and lengths gives: 

(b)  Nominally  pinned  bases, as Clause 5.1.3.3 of BS 5950-1 

( l+O.lR,))  

which in the case of identical rafter  forces, sections and  lengths  gives 

(c) Nominally  rigid  bases, as Clause 5.1.3.2 of BS 5950-1 

(1 + 0.08R, ) 

which, in the case of identical rafter  forces, sections and  lengths gives 

(1 + 0.8 R,  ) 
\ / \ 

The symbols for the above  expressions  are the same as in Section 4.4.3, except: 

p,, is the axial  compression in left-hand rafter  from  elastic analysis 

P, is the axial  compression in right-hand rafter  from elastic analysis 
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.crit is the Euler buckling load of left hand rafter = iZ2EIri/512

Prrcr,t is the Euler buckling load of left hand rafter =

R
left hand rafter stiffness El rC Is

total rafter stffiiess (EIr/S + EIrr/Sr )

R = right hand rafter st?ffness = EIrr /sr

total rafter stffiiess (El ree +EIrr/Sr )

column stffiiess El /hR2 =
totalrafter st(fness

=

(EIrp /s +Elrr /Sr )

is the left hand rafter inertia in the plane of the portal

Irr is the right hand rafter inertia in the plane of the portal

s is the left hand rafter length along the slope (valley to apex)

Sr is the right hand rafter length along the slope (valley to apex).

4.4.5 Portal frame with props or valley beams
The theory is due to Davies5'6'7, but modified to include an explicit column
base stiffness in (b) and (c) below. It assumes that all the valleys are supported
either by props or by valley beams.

A simple equivalent frame with one column pinned top and bottom is used,
representing an end bay. This is loaded by a share (normally 50%) of the total
of all the prop loads in the frame on the pin-ended column. Assuming that the
internal column load is twice the external column load, the equivalent frame
prop load is NP,

where:

P is the axial compression in the external column from elastic analysis

N is the total number of props in the frame

The rafter beyond the first bay contributes little to the sway stability, so is
ignored.

Valley beams do not add appreciably to the stability of the portal and do not
destabilise it when well detailed with a rigid connection to the eaves.
Therefore, rigidly connected valley beams make no contribution to N. A portal
with valley beams but no props has N = 0.

(a) Truly pinned bases, or bases with rockers as Clause 5.1.3.1 of
BS 5950-1

2 3EIr
cr

2 [0.3PrS2 + +1 (N+1)Ph]

which may be expressed in terms of the Euler loads as
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P,, is the Euler buckling load of left hand rafter = dEZrl/st 

P,.,.,,.,, is the Euler buckling load of left hand rafter = dEI,/s,2 

- left hand rafter stiffness - EI /st  
- 

total rafter stgfiess ( EZ , p /so + EI /S , ) 
- 

- right hand rafter stiffness EI /sr 
- - 

total rafter stg&ess ( EZ,, /S, + EZ,, /S, ) 
- 

- column st$@ess EI c /h - - - 
total rafter stflness ( EI /S B + EI /S, ) 

is  the left hand rafter inertia in the plane of  the portal 

is the right hand rafter inertia in the  plane  of  the portal 

is  the left hand rafter length  along  the slope (valley  to  apex) 

is the right hand rafter length along the slope (valley  to apex). 

Portal  frame with props or valley  beams 

The theory is due to D a ~ i e s [ ~ . ~ . ~ ] ,  but modified to include an explicit column 
base stiffness in (b) and (c) below. It assumes that all  the  valleys are supported 
either by props or by valley beams. 

A simple equivalent frame with  one column pinned top and bottom is used, 
representing an  end  bay.  This is loaded by a share (normally 50%) of  the  total 
of all the prop loads in the frame  on the pin-ended column. Assuming  that  the 
internal column load  is  twice  the external column  load, the  equivalent frame 
prop load is NP,, 

where: 

P, is  the axial compression in the external column  from elastic analysis 

N is  the  total number of props in the frame 

The rafter beyond the first bay contributes little  to  the  sway stability, so is 
ignored. 

Valley  beams do not  add appreciably to  the  stability  of  the portal and  do not 
destabilise it  when  well detailed with a rigid connection to  the eaves. 
Therefore, rigidly connected valley beams make no contribution to N. A portal 
with  valley beams but no props has N = 0. 

(a) Truly  pinned bases, or bases with rockers as Clause 5.1.3.1 of 
BS 5950-1 

3 E I ,  
4 ,  = /, \ 

which may  be expressed in terms of  the Euler loads as 
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2 1
Cr /

P (P
+(4+3.3R)(N+1)

'32r.crit Pc.Crit

(b) Nominally pinned bases, as Clause 5.1.3.3 of BS 5950-1

(1+O.1R )
2cr

P P
+(2.9+2.7R)(N+1)

'2r.crit c.crit

(c) Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1

(1 + O.O8R)
CC / /1P (P

+(O.8+O.52R)(N+1)j
'2r.crit c.crit

where, for rafters of equal cross-section and equal length

'2 is the rafter inertia in the plane of the frame

s2 is the length of rafter pair (i.e. eaves to apex to valley) but for
asymmetrical arrangements of rafters, 12/s2 is the value that gives the
true ratio of column stiffness to stiffness of the pair of rafters
(length = sum of rafter lengths, i.e. eaves to apex to valley) for
rotation about the eaves.

P2r.crit is the Euler critical buckling load of the pair of rafters adjacent to the
external column

2irEI=
2

for a symmetrical pair of rafters.
(s2)

= stiffness of column = (EI /h)(E12 Is2 )
stiffness of rafter pair
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Nominally  pinned bases, as Clause 5.1.3.3 of BS 5950-1 

(1 + O.lR,  ) 
- - 

Nominally rigid bases, as Clause 5.1.3.2 of BS 5950-1 

( 1  + 0.08 R ,  ) 
- - 

where,  for  rafters of equal  cross-section and equal  length 

Z2 is the rafter  inertia  in the plane of  the frame 

s2 is the length of rafter  pair  (i.e.  eaves  to  apex  to  valley) but for 
asymmetrical  arrangements of rafters, 12/s2 is the value that gives the 
true  ratio of column  stiffness  to  stiffness of the pair of rafters 
(length = sum of rafter  lengths,  i.e.  eaves  to  apex  to  valley)  for 
rotation about the eaves. 

P2r.crit is the Euler  critical buckling load of  the pair of rafters  adjacent to  the 
external  column 
- n 2  EZ -~ 

( S 2  )*  
for  a  symmetrical  pair of rafters. 

stiffness of column 

stiffness of rafter pair 
R ,  = = (Elc / h ) ( E I 2  / S 2  1 
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5 SECOND-ORDER ANALYSIS

5.1 Introduction
Second-order analysis is the term used to describe analysis methods in which the
effects of increasing deflection under increasing load are considered explicitly in
the solution method, so that the results include the P.zl (P-big delta) and P.S
(P-little delta) effects described in Section 2.4. The results will differ from the
results of first-order analysis by an amount dependent on the magnitude of the
P.zl and P.S effects.

Second order analysis will normally be more accurate than first-order analysis
with magnification factors.

The method and limitations of a second order analysis should be clearly
understood before it is used and before resistance checks are applied to the
results.

5.2 Design steps
This Section gives the steps required to satisfy Clauses 5.5.2 or 5.5.3 of
BS 5950-1 using second-order analysis, as Clause 5.5.4.5 of BS 5950-1. For
second-order analysis, A. is taken as 1.0.

Out-of-plane stability member must also be checked as required by BS 5950-1
Chapters 4 and 5, but is outside the scope of this document.

Design steps for plastic design
1. Carry out a plastic analysis of the frame.

Apply the loads to the frame. For load combinations other than Load
combination 1 (see Clause 2.4.1.2 of BS 5950-1), notional horizontal forces
(NHF) need not be applied (see Clause 2.4.2.4 of BS 5950-1). Where
NHF are applied to asymmetric frames or symmetric frames with
asymmetric loading, it will generally be necessary to apply two load cases,
one with the NHF in one direction and the other with the NHF in the other
direction to ensure that the most unfavourable load case is applied.

2. Check the strength of the frame

(a) Calculate A and check that A,, � 1.0. Note that second-order analysis
should not give higher values of A than first-order analysis

(b) Check the member strength and out-of-plane stability at 1.0 x ULS
loads.

Design steps for elastic design
1. Carry out an elastic analysis of the frame. Loading should be the same as

given in Step 1 for plastic design.
2. Calculate the moments and forces around the frame. Check the

cross-sectional resistances using BS 5950-1 Clause 4.8 using the output of
the second-order analysis at 1.0 x ULS loads.
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Out-of-plane stability member must also be  checked as required by BS 5950-1 
Chapters 4 and 5 ,  but is outside the scope of this document. 

Design  steps for plastic  design 

1 .  

2. 

Carry out a plastic analysis of  the frame. 

Apply  the loads to  the frame.  For load combinations other than Load 
combination 1 (see Clause 2.4.1.2 of BS 5950-l), notional horizontal forces 
(NHF) need not be applied (see Clause 2.4.2.4 of BS 5950-1). Where 
NHF  are applied to asymmetric frames or symmetric frames with 
asymmetric loading, it  will generally be necessary to apply two load cases, 
one with  the NHF in one direction and the other with the NHF in  the other 
direction to ensure that  the most unfavourable load case  is applied. 

Check the strength of  the frame 

(a) Calculate i$, and  check that 4 2 1.0. Note that second-order analysis 
should not  give higher values of i$, than first-order analysis 

(b) Check the member strength  and out-of-plane  stability at  1.0 x ULS 
loads. 

Design  steps for elastic  design 

1.  Carry  out an elastic analysis of  the frame. Loading should be  the same as 
given in Step  1  for plastic design. 

2. Calculate the moments and  forces around the frame.  Check the 
cross-sectional resistances using BS 5950-1 Clause 4.8 using the output of 
the second-order analysis at 1.0 x ULS loads. 
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5.3 Structure model
5.3.1 Division of members into elements for P.o effects
In second-order analysis of portal frames, all the members in a frame may need
to be divided into several elements along their lengths for an accurate analysis.
The reason is that P.S (P-little delta) effects described in Section 2.4.2 have a
significant influence on the behaviour of practical portal frames, but most
analysis methods do not allow for these effects within the model element. The
P.S (P-little delta) effects are not the same as the P.zl (P-big delta) effects
described in Section 2.4.3. Many software packages include modules of
'P-delta' analysis, but these are usually designed to consider the relative
displacements of the ends of the element only. This is the same as the P.zl
(P-big delta) effects on the element. When a member is divided into a number
of elements, then the P.zl effects of all the elements will approximate to the P.S
effects of the entire member. As the number of elements is increased, the
approximation is improved. It is recommended, as a simple guide, that
members should be divided into 10 elements for analysis of portal frames,
because portal members are commonly slender and P.S effects are more
important on slender members.

There are analysis methods in which the P.S effects are modelled within the
length of each element. In these methods, the coefficients of each of the
bending terms in the stiffness matrix are modified by factors similar to 'stability
functions' such as those published by Livesiey and Chand1er14. Where this
method is used, the member length need not be divided into numerous elements
to allow for P.S effects. Division of a member into elements may still be
required to provide nodes at which loads can be applied if loads are applied
within the length of a member. It is important that the designer is sure that this
'stability function' type method is incorporated in an analysis method before
deciding not to sub-divide members into 10 or more elements. An example of a
'stability function' type of solution is provided by the worked examples of the
'hand' method. In these examples, the stiffness of the members is reduced by a
factor (1 - PsIPT), where PULS is the axial compression at the Ultimate Limit
State and PC, is the elastic critical buckling load of the member. Whilst this is
an approximation, it is an example of modification of the member stiffness by a
factor to allow for P. effects. An alternative factor that may be used is
(1 - VULS/VCF) = ( 1/A), where VULS, Vcr, and ,. are as defined in Section 2.3.

5.3.2 Initial imperfections of frames
All frames must be designed to allow for initial imperfections.
BS 5950-1: 2000 requires that the effects of these imperfections are included by
application of the notional horizontal forces. These are taken at 0.5% of the
factored loads applied in Load combination 1 (gravity loads) in cases without
significant horizontal loads, as BS 5950-1 Section 2.4.2.4. Notional horizontal
forces are not applied in load combinations including horizontal loads.

The notional horizontal forces are assumed to act in any one direction, thus two
analyses are required, except for symmetrical frames with symmetrical loading.
In one analysis, the notional horizontal forces applied in one direction in the
plane of the portal frame, and in the other analysis, the forces are applied in the
opposite direction in the plane of the portal frame.
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5.3.3 Initial imperfections of members
In-plane buckling checks of members is covered in detail in Section 6. This
section only covers principles that affect the analysis model.

Where the buckling resistance of a member is to be checked by a method other
than direct application of the buckling checks in BS 5950-1, it is important that
the effect of residual stresses is included. This may be achieved by using initial
imperfections equivalent to those used in BS 5950-1, Annex C to define the
buckling curves. Altematively, the moment due to strut action can be
calculated from BS 5950-1 Annex C.3.

If initial imperfections of members are allowed for in the analysis model of a
complete frame, it should be remembered that these imperfections might be
either destabilising or stabilising, depending on the direction of the deflections
induced by each load combination. Numerous analyses for each load case may
be required to ensure that the worst case has been considered. Because of this,
it is recommended that the frame is analysed assuming initially perfect members
and that the initial imperfection effects are then added in the most unfavourable
direction to each individual member, in addition to the moments and forces
from the frame analysis.

5.3.4 Base stiffness
BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model. It is important to note that the second-order analysis uses the
stiffness of the frame at ULS, hence only the ULS base stiffness values may be
used, not the SLS values.

The following base stiffnesses may be used:

Base with a pin or rocker
The base stiffness should be taken as zero.

Nominally pinned base
If a column is nominally pin-connected to a foundation assuming that the base
moment is zero, the base should be assumed to be pinned in the global analysis.
Therefore, where the moment applied to the foundation is required to be zero,
the 10% colun-in stiffness value cannot be applied in the global analysis.
However, the 10% colunm stiffness can be used in the calculations of stability
functions that allow for P. 8 (P—little delta) effects. This is the reason for the
reduction of the effective length of columns when calculating Pcr in
Appendix A.3.2, which is also referred to in Appendix B.3.2. The reduction of
effective length is also applicable in the internal column in-plane checks
recommended in Section 6.

Nominally semi-rigidbase
A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis.
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In-plane buckling checks of members is covered in  detail  in  Section 6. This 
section only covers principles that affect the analysis model. 

Where the  buckling  resistance  of a member is  to  be checked by a method other 
than direct application of  the buckling checks in BS 5950-1, it  is important that 
the effect of  residual stresses is included. This may  be achieved by  using  initial 
imperfections equivalent to  those  used  in BS 5950-1, Annex C to define the 
buckling curves. Alternatively, the moment due  to strut action  can  be 
calculated from BS 5950-1 Annex C. 3. 

If  initial imperfections of members are allowed for in  the analysis model  of a 
complete frame, it  should be remembered that these imperfections might  be 
either destabilising or stabilising, depending on the direction of  the deflections 
induced by each load combination. Numerous analyses for each load case may 
be required to ensure that  the worst case has been considered. Because of this, 
it is recommended that the frame is analysed assuming  initially perfect members 
and that the  initial imperfection effects are then added in  the  most unfavourable 
direction to each individual member, in addition to  the  moments and forces 
from the frame analysis. 

5.3.4 Base  stiffness 

BS 5950-1 Clause 5.1.3 gives guidance on  the  base  stiffness  that  may  be 
assumed in design.  The provisions for ULS analysis may  be  used  in  the 
analysis model. It is important to note that the second-order analysis uses  the 
stiffness of the frame at ULS, hence only the ULS base  stiffness  values  may  be 
used, not the SLS values. 

The following base stiffnesses may  be  used: 

Base with a  pin  or  rocker 

The base stiffness should  be  taken as  zero. 

Nominally  pinned  base 

If a column is  nominally pin-connected to a foundation assuming  that  the  base 
moment  is zero, the  base should be assumed to be pinned  in  the  global analysis. 
Therefore, where the moment applied to the  foundation  is required to be zero, 
the 10% column stiffness value cannot be  applied  in  the  global analysis. 
However, the 10% column stiffness can be used  in  the calculations of  stability 
functions that allow for P. 6 (P-little delta) effects. This  is the  reason for the 
reduction of  the effective length of columns when  calculating P,, in 
Appendix A.3.2, which  is also  referred  to in  Appendix B.3.2.  The reduction  of 
effective length is  also applicable in  the  internal column in-plane checks 
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Nominally  semi-rigid  base 

A nominal base stiffness of up to 20% of  the column stiffness  may  be  assumed 
for the ULS calculations, provided that the  foundation is designed for the 
moments and forces obtained  in  the analysis. 
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Nominally rigid base
The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases.

5.3.5 Tied portals
Tied portals are especially sensitive to second-order effects because of the high
axial forces in the rafters. In addition, tie portals with low pitch rafters are
very sensitive to the vertical deflection of the apex. This is because the apex
acts as a central support to the rafters, which act as a two span beam supported
by the columns and the apex. The axial forces in the rafters are determined by
the vector component of the reaction from the rafters acting as a two-span
beam. Therefore, the axial forces are inversely proportional to the actual slope
of the rafters in their loaded position. As the apex deflects, the axial force in
the rafters must increase to provide the same vertical reaction at the apex. This
phenomenon is illustrated in B.5.3. It is a non-linear effect that must be
accounted for.

An additional consideration is that the rafters in a tied portal may be so shallow,
relative to their span from eaves to apex, that the deflections are significant.
Where this occurs, the curvature shortens the end to end distance of the rafter.
This effect adds to the apex drop. This curvature shortening effect is illustrated
in B.5.3. It is another non-linear effect that must be accounted for.

Because of the above two non-linear effects, tied portals must be analysed using
routines that can model these non-linear effects. It is essential that designers
must check the functionality of their software with the suppliers before
designing tie portals. It is unlikely that any software that uses the original
geometry of the rafters throughout the analysis can be reliable for low pitch
rafters, unless an iterative modification of the rafter geometry is used at some
point in the analysis.

Some software packages use a system of modification to the stiffness matrix
while maintaining the original geometry of the model. This is often referred to
as 'P-delta' analysis. This type of analysis routine is not appropriate for
analysis of tied portals with low pitch rafters, because of the non-linearity,
unless a routine is added to account for this. Equally, routines that use stability
functions but retain the original geometry throughout the analysis cannot model
the non-linearity of the apex deflection and are not appropriate for portals with
low pitch rafters, a procedure is added to account for this.

5.4 Analysis methods
5.4.1 General
Second order analysis may be carried out by numerous methods, including:

• Closed solutions using a geometrical or algebraic function.

• Matrix methods.

• Energy methods.

It is important that the method chosen is suitable for the particular application.
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Nominally  rigid  base 

The base stiffness should  be  taken  as equal to  the column stiffness and the 
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axial forces in  the rafters. In addition, tie portals with  low pitch rafters are 
very sensitive to the  vertical  deflection  of  the apex. This  is because the  apex 
acts as a central support to  the rafters, which act as a two span beam supported 
by  the columns and the apex. The axial forces in  the rafters  are determined by 
the vector component of  the  reaction from the rafters acting as a two-span 
beam. Therefore, the  axial forces are inversely proportional to the  actual  slope 
of  the rafters in their loaded position. As the apex deflects, the axial force in 
the rafters must increase to provide the same vertical reaction at the apex. This 
phenomenon is illustrated in B.5.3. It is a non-linear effect that  must  be 
accounted for. 

An additional consideration is  that  the rafters in a tied portal may  be so shallow, 
relative to their span from eaves  to  apex, that  the deflections are significant. 
Where this occurs, the curvature shortens the end to end distance of the rafter. 
This effect adds to  the apex drop.  This  curvature shortening effect is illustrated 
in B .5.3. It is another non-linear effect that must be accounted for. 

Because  of  the above two non-linear effects, tied portals must be analysed using 
routines that can model  these  non-linear effects. It  is essential that designers 
must check the  functionality  of their software with  the suppliers before 
designing tie portals. It is unlikely  that  any software that uses  the  original 
geometry of  the rafters throughout the analysis can be  reliable for low  pitch 
rafters, unless an iterative modification  of  the rafter geometry is  used at some 
point in the analysis. 

Some software packages use a system of  modification to the  stiffness matrix 
while maintaining the original geometry of the  model. This is often referred to 
as ‘P-delta’ analysis. This type  of analysis routine is not appropriate for 
analysis of  tied portals with  low pitch rafters, because  of the non-linearity, 
unless a routine is added to account for this. Equally, routines that use  stability 
functions but retain  the original geometry throughout  the analysis cannot model 
the non-linearity of  the apex deflection and are not appropriate for portals with 
low pitch rafters, a procedure is added to account for this. 

5.4 Analysis methods 
5.4.1 General 
Second order analysis may  be carried out by numerous methods, including: 

0 Closed solutions using a geometrical or algebraic function. 

0 Matrix methods. 

0 Energy methods. 

It is important that the  method chosen is  suitable for the particular application. 
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One of the most common cases of allowing for second-order effects is a strut
buckling curve. The resistance of the strut is reduced below its squash load by
the bending moments caused by the axial load. This is a case of second-order
analysis that can be performed using a geometrical function to produce a closed
solution. The classic solution is the Perry-Robertson solution, which uses a sine
curve to model the strut deflected form. However, it is not normally practical
to produce an accurate analysis of a frame using geometrical functions, although
an approximate analysis can be made using the first mode of frame buckling as
the geometrical function. An example of this method is the amplification of
sway effects in Clause 2.4.2.7 of BS 5950-1.

The more universally applicable method is by iterative application of matrix
analysis described in Section 5.4.2.

In the case of single-storey plastic portal frames, the energy method provides
one of the simplest solution techniques. Using the energy method, it is possible
to perform a second-order analysis without computer software, although the
solution is laborious and more conservative than a computer solution. Examples
of this method are given at the end of this document.

In iterative solutions, the number of iterations should be sufficient to ensure that
the stiffness of the frame is not overestimated as the loading approaches the
collapse load. The solution method should include an equilibrium check to
ensure that the applied loads are in equilibrium with the frame resistance within
a satisfactory tolerance.

5.4.2 Matrix methods
There are at least two matrix methods of second order analysis available. One
modifies the geometry after each load increment, and then recalculates the
stiffness matrix using the new geometry and unmodified member properties.
The other, often called P-delta analysis, uses the initial geometry throughout but
modifies the terms of the stiffness matrix according to the displacements and
axial load in each member but always referring to the original member
geometry. There are special requirements for modelling tied portals, which are
given in Section 5.3.5. It is unlikely that any routine using the initial geometry
can be reliable for tied portals with low pitches unless a separate iterative
procedure is used in addition.

Also, the analysis may be either elastic/perfectly-plastic or elasto-plastic (in
which the modulus of elasticity reduces to model the stress-strain behaviour in a
real member).

It is very important that a matrix method addresses all the issues raised in
Section 5.1. It is equally important to recognise that the overall frame
behaviour (the P.zl effects) cannot be correctly calculated unless the member
effects (the P. 5 effects) are correctly included. For example, if the column of a
portal is modelled as one element, it will give unsafe answers unless the
stiffness is correctly modified to allow for the appropriate column buckling
mode.
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There  are  at least two matrix methods of  second order analysis available. One 
modifies the geometry after each load increment, and then  recalculates  the 
stiffness matrix using  the  new geometry and unmodified member properties. 
The  other, often called P-delta analysis, uses  the  initial geometry throughout but 
modifies the terms of  the stiffness matrix according to  the displacements and 
axial load in each member but always referring to  the original member 
geometry.  There  are special requirements for modelling  tied portals, which  are 
given in Section 5.3.5. It is unlikely that any routine using the  initial geometry 
can be  reliable for tied portals with  low  pitches  unless a separate iterative 
procedure is  used  in addition. 

Also, the analysis may  be either elastic/perfectly-plastic or elasto-plastic  (in 
which the  modulus  of elasticity reduces to  model  the stress-strain behaviour in a 
real member). 

It is very important that a matrix method addresses all  the issues raised  in 
Section 5.1. It is equally important to  recognise  that  the overall frame 
behaviour (the P.d effects) cannot be correctly calculated  unless  the  member 
effects (the P.6 effects) are  correctly included. For example, if the column of a 
portal is modelled as one element, it  will  give  unsafe answers unless  the 
stiffness is correctly modified  to allow for the appropriate column buckling 
mode. 
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5.4.3 Energy methods
The energy method is a long-established method of structural analysis. The
method uses the principle of conservation of energy, equating the strain energy
in the structure under load with the potential energy given up by the load as the
structure deflects.

It is very important that an energy method addresses all the issues raised in
Section 5. 1. It is equally important to recognise that the overall frame
behaviour (the P.zl effects) cannot be correctly calculated unless the member
effects (the P.8 effects) are correctly included. For example, if the column of a
portal is modelled as one element, it will give unsafe answers unless the
stiffness is correctly modified to allow for the appropriate column buckling
mode.

The strain energy in the structure is given by the area under the load-deflection
diagram. This is illustrated for a typical single bay portal frame in Figure 5.1.
The load factors at the formation of the first and second hinges are denoted by, and 2.

Load

Deflection

The second-order effects reduce the resistance of the frame to externally applied
loads. This is simply illustrated by the column of a portal frame. The rotation
of a typical exterior column is shown in Figure 5.2. In the deflected state, the
top of the column has moved down by 8. This is mostly due to the rotation
of the column top relative to the column base. In addition, the deflection 8 is
partly due to the curvature of the column, which reduces the distance between
the top and the bottom of the column, causing the column top to move down.
This column top deflection moves the rafter shear force, V. downwards,
releasing potential energy that is not calculated in first-order analysis.
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Figure 5.1 Typical load-deflection diagram

5.4.3 Energy methods 
The  energy method is a long-established  method  of structural analysis. The 
method  uses  the principle of conservation of energy, equating the strain energy 
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The second-order effects reduce the resistance of  the frame  to externally applied 
loads. This  is simply illustrated by  the column of a portal  frame.  The rotation 
of a typical exterior column is shown in Figure 5.2. In the deflected state, the 
top of the column  has moved down by 6. This  is mostly due to the  rotation 4 
of the column top relative to the column base. In addition, the  deflection 6 is 
partly due to the curvature of the column, which reduces the  distance  between 
the top and the bottom of the column, causing the column top to move down. 
This column top deflection moves the rafter shear  force, V,  downwards, 
releasing potential energy that is not calculated in first-order analysis. 
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Figure 5.2 Column top deflections

By the principal of conservation of energy, the potential energy released by a
given range of deflection is equal to the strain energy absorbed in the structure
over that same range of deflection. This may be written:

E=E,
where:

E is the potential energy released

E is the strain energy absorbed in the structure.

For a given range of deflection, some potential energy is released by
second-order deflections, which is defined here as E2. The remaining potential
energy is released by first-order deflections and is defined here as E1.
Therefore, we can write:

E = E = E1 + E2

These energies are illustrated in Figure 5.3.

Load

Figure 5.3 Energy

At any point on the load-deflection curve, the resistance to externally applied
loads can be found from the conservation of energy over an infinitesimal
increment of deflection, as shown in Figure 5.4.

-
h

Ep2

Ep 1

Deflection
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Figure 5.2 Column  top  deflections 

By the principal of conservation of energy, the potential energy released by a 
given  range of deflection is  equal to the strain  energy  absorbed  in the structure 
over that same  range  of deflection. This may  be written: 

Ep = E, 

where: 

Ep is the potential energy released 

E, is the strain  energy  absorbed  in the structure. 

For  a given  range of deflection, some potential energy is released by 
second-order  deflections, which is defined here as Epz. The remaining potential 
energy is released by first-order deflections and is defined here as Epl. 
Therefore, we can  write: 

E, = Ep = Epl + Ep2 

These  energies  are illustrated in Figure 5.3. 
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Figure 5.3 Energy 

At any point on the load-deflection curve, the resistance to externally applied 
loads can be  found from the conservation of energy  over an infinitesimal 
increment of deflection, as shown in Figure 5.4. 
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Load

xp

The energy equation is:

dE, = dE1 + dE2

where, at the particular level of load being considered:

dE, = .frMdk) + M4O
dE1 = Xwdz1

dE2 = J(P2ds)
A, is the first-order load factor at the load level considered

w is the applied loads

dzl is the increments of displacements at 2,

P2 is the axial loads in the member including the effect of the drop of the
apex

s is the straight line distance between the ends of members (or parts of
members between hinges)

ds is the increment of shortening of the distance between the ends of the
members due to change of curvature

Mpr is the plastic moment reduced by axial force at the hinges

d8 is the increments of rotation of the hinges

is the rotation of the member between the 'frame unloaded' position
and the position at A,

dq5 is the increment of rotation of the members

M is the first-order moments throughout the frame

dk is the increments of curvature.
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Deflection

Figure 5.4 Energy over an increment of deflectionFigure 5.4 Energy  over an increment of deflection 

The  energy equation is: 

dEs = dEpl + dEQ2 

where,  at the particular level of  load being considered: 

d E s  = l(Mdk) + CMQ,d8 

dEQl = 3LiCWdd 

dEp2 = C P 2 s 4 d 4  + CI(P2ds )  

A, is the first-order load factor at the load level considered 

W is the applied loads 

dA is the increments of displacements at A, 
P2 is the axial loads in  the member including the effect of  the drop of  the 

apex 

S is the straight line distance between the ends of members (or parts of 
members  between hinges) 

Cls is  the increment of shortening of the distance between the ends of the 
members  due to change of curvature 

MPr is the plastic moment  reduced by  axial force at the hinges 

d 8  is the increments of rotation of  the hinges 

4 is the rotation of the member  between the ‘frame unloaded’ position 
and the position at A, 

d 4  is the increment of rotation of  the members 

M is the first-order moments throughout the frame 

dk is the increments of curvature. 
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The second-order load factor at the particular level of load being considered is:

dE2
1—

dE
The load factor at failure in each load case is taken as the maximum value of 2M
found for that load case.

The energy method is convenient for 'hand' calculations, as shown in
Appendices A and B. This application of the Energy Method is similar to the
method given by Borne and Morris141, but it is made more rigorous by including
the effects of P.S (P-little delta) in the members and by more rigorous
calculation of the deflections. The energy equations used in the hand method
are given in Appendix A.2.2.

The energy method has been calibrated with rigorous iterative second-order
elastic-plastic matrix analysis methods on frames in which the sway-check
deflections, S (calculated as in Section 3.3.2), do not exceed h/500. This
implies that is approximately 2.0. It is recommended that the method is not
applied for frames with greater flexibility without due caution. Frames that are
more flexible are generally inefficient and it is advisable either to stiffen the
frame or choose a stiffer structural concept.
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The second-order load factor at the particular level  of  load  being considered is: 

The load factor at failure in each load case is taken as the maximum value  of ;IM 

found for that  load case. 

The  energy method  is convenient for ‘hand’ calculations, as shown in 
Appendices A and B. This application of the Energy Method  is similar to  the 
method given by Horne and but it  is  made more rigorous by  including 
the effects of P.6 (P-little delta) in  the members and by more rigorous 
calculation of  the deflections. The energy equations used in the hand method 
are given in  Appendix A.2.2. 

The  energy method  has  been calibrated with rigorous iterative second-order 
elastic-plastic matrix analysis methods on  frames in which the  sway-check 
deflections, 6 (calculated as in Section 3.3.2), do not exceed M.500. This 
implies that Acr is approximately 2.0. It is recommended that the method is  not 
applied for frames with greater flexibility without due caution. Frames that are 
more flexible are generally inefficient and it  is  advisable either to  stiffen  the 
frame or choose a stiffer structural concept. 
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6 MEMBER CHECKS

6.1 General
This section describes the member checks that should be performed and how to
calculate the bending moment diagram used for these checks.

Section 6.2 provides a general introduction to the differences between the
first-order moments in initially straight members and the actual moments
occurring, including second-order effects. Section 6.3 describes the cases in
which the members may need in-plane buckling checks, even when the frame
has been proved to be stable in-plane.

6.2 Additional bending moments from strut action
The effects of both geometry and residual stresses must be included in member
design. BS 5950-1 uses the concept of an equivalent geometrical imperfection.

In the elastic domain, the following relationship can be proved by a closed
solution for a pin-ended member supporting both an axial compressive force and
a distributed lateral load in the form of a half sine curve, as shown in Figure
6.1

t

___ P

Figure 6.1 Additional def/ections from strut action

The maximum moment is given by:

Mniax = Px8+M1 =Px(e0+60)

'icr

where:

P is the axial compressive force

e0 is the initial imperfection
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Figure 6.1 Additional  deflections  from strut  action 

The  maximum moment  is given by: 

M max = P x S p  + M ,  = P x ( e ,  +S,) P 
1--- 

\ pc, 

where: 

P is the axial compressive force 

eo is  the initial imperfection 
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M1 is the first-order bending moment

00 is the deflection from the first-order moments

O, is the second-order deflection

Pcr is the Elastic Critical Buckling load.

Assuming that the above relationship applies to other patterns of loads and
moments, the equation can be used to study how the code value of strut
imperfection should be applied to a second-order analysis, that used initially
straight members.

The French NAD'51 to ENV1993-1-l6' gives a method of analysing members
with axial compression and bending that relies on this equation as an alternative
to ENV 1993-1-1 Clause 5.5.4.

Second-order analysis assuming initially straight members will calculate the
maximum moment as:

Mmax = Px(80) 1
+M1

1--f-
P

Therefore the only difference between second order with the strut imperfection
and second-order without the strut imperfection is:

SM = Px(e0) 1 SinI2_L
'icr )

Therefore, all that is needed to include the effect of the code strut imperfection
is to add the above moments to the second-order bending moments calculated
for initially straight members. In external columns of portals, this will usually
be demonstrably small. In internal columns with no applied moments, this is
the strut moment from the code imperfection. In rafters, this will add a very
small amount to the moments that could be considered to be covered by the
factor that allows for strain hardening and the increased reliability arising from
the redundancy of a plastic design.

6.3 In-plane member checks
6.3.1 General
For most structures, all the members resisting axial compression must be
checked to ensure adequate resistance to buckling about both the major and
minor axes. However, in portal frames checked for in-plane stability by the
methods defined in this publication, in-plane buckling of the members is not the
critical design case for many members. This Section gives guidance for the
majority of portal frames, that is the frames, in which the bending moments
around the frame, are predominantly from loads distributed along the rafters so
as to cause relatively large bending moments. In members with both:

(i) relatively low axial compression, and
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M I  is  the first-order bending moment 
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S, is the second-order deflection 

Pcr is  the  Elastic Critical Buckling load. 
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Therefore, all that is needed to  include the effect of  the code strut imperfection 
is  to  add the above moments to  the second-order bending moments calculated 
for initially straight members. In external columns of portals, this will  usually 
be demonstrably small. In internal columns with no applied moments, this  is 
the strut moment from the code imperfection. In rafters, this will add a very 
small amount to the moments that could be considered to be covered by the 
factor that allows for strain hardening and the increased reliability arising from 
the redundancy of a plastic design. 

6.3 In-plane member checks 
6.3.1 General 
For most structures, all the members resisting axial compression must be 
checked to ensure adequate resistance to  buckling about both  the major and 
minor axes.  However, in portal frames checked for in-plane  stability  by  the 
methods defined  in this publication, in-plane buckling of  the members is not the 
critical design case for many members.  This Section gives  guidance for the 
majority of portal frames, that is the frames, in which  the  bending moments 
around the frame, are predominantly from loads distributed along  the rafters so 
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(i) relatively low axial compression,  and 
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(ii) relatively large bending moments which occur away from the maximum
strut action moments at mid-length of members,

the strut action is so low relative to the maximum moments that buckling is not
the critical failure criterion. Simplified guidance is presented for common
portals in Section 6.3.2 and for tied portals in Section 6.3.3. The guidance is
very different for the rafters of these two types of frame.

6.3.2 Common portals
Common portals are portals without ties at or near rafter level. In these frames,
guidance on in-plane buckling checks may be simplified as follows:

Rafters and columns that resist the full haunch moment of the
adjoining rafter.
In these members, the bending moments at the ends of the members are very
large, but at mid-length the bending moment is much less. Examples are shown
in Figure 6.2.

Figure 6.2 Members with relatively low moments at mid-length
compared with the ends

In these cases the strut action moment is at a maximum where the first-order
bending moments are approximately half the maximum. In addition, the strut
action moment is relatively small compared with the moment of resistance of
the section. Therefore, these members need not be checked for in-plane
buckling.

Columns that do not resist the full haunch moment of the adjoining
rafter.
In members that do not resist the full haunch moment of the adjoining rafter, it
is possible that the strut action moment is relatively large compared with the
applied bending moment. The principal example of this is the internal columns
of multi-span frames as shown in Figure 6.3. These members should be
checked for in-plane buckling. These members may be checked by BS 5950-1
Clause 4.8.3.3.2(a)(i) using a segment length, L, defined in BS 5950-1
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In these cases the strut action moment is at  a maximum  where the first-order 
bending  moments are approximately half the maximum. In addition, the strut 
action moment is relatively small compared with the moment of resistance of 
the section. Therefore, these members  need not be checked for in-plane 
buckling. 
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In members that do not resist the  full haunch  moment of the adjoining rafter, it 
is possible that the strut action moment  is relatively large compared with  the 
applied bending  moment.  The principal example of  this  is  the internal columns 
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Clause 4.7.1.1, of the height from the base to the eaves in the absence of
intermediate in-plane restraint. The effective length, LE, may be taken as:

LE = 1.0 L for truly pinned base columns

LE = 0.85 L for nominally pinned base columns

LE = 0.7 L for nominally fixed base columns.

These effective lengths are not from Annex E of BS 5950-1 because Annex E
assumes the adjoining beams remain generally elastic, which is not common in
portal rafter design.

The exceptions are columns that have sufficient bending capacity to resist the
full haunch moment. One example of this exception is where an extension of a
frame is constructed, so that the original external column has become the
internal column of the extended frame. Another example is where a column
supports rafters at levels so different that the column section is sufficient to
resist the full haunch bending moment and this section is continued to the
foundation, as shown in Figure 6.4.

Figure 6.4 Internal column supporting rafters at different levels

6.3.3 Tied portals
Tied portals are portal frames in which there is a tie at or near rafter level. The
tie at this level causes very high axial loads in the rafters and reduces the
bending moments in the rafters as shown in Figure 6.5.
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Figure 6.3 Internal columns in a typical multi-span frame
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Figure 6.4 Internal  column  supporting  rafters  at  different levels 

6.3.3 Tied portals 
Tied  portals  are  portal  frames in which there is a tie at or near rafter level. The 
tie at this level causes very  high axial loads in the rafters and reduces the 
bending  moments in the rafters  as shown  in Figure 6.5. 
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Figure 6.5 Tied portal bending moments in the rafters

The bending moment near the mid-length of the rafter approaches the moment
of resistance of the rafter. This large bending moment occurs near the point of
maximum strut action, so the in-plane buckling of the rafter must be checked
with the coexistent bending moment diagram. This may be checked by
BS 5950-1 Clause 4.8.3 taking the effective length as the length along the rafter
from apex to eaves/valley. The member check may be made using BS 5950-1
Clause 4.8.3.3.2(a)(i) taking the rafter section as constant throughout the
effective length (i.e. ignoring the increase in section properties of the haunch),
using the bending moment diagram of the full length from apex to eaves/valley
to define the values of moment used in BS 5950-1, Table 26 and calculate m.

6.4 Bending moments for frames using plastic
design

6.4.1 General
Where the in-plane stability of individual members of a frame should be
checked (see Section 6.3), the bending moments can be found directly from
elastic-plastic analysis.

Where elastic-plastic analysis has not been used, the moments may be calculated
approximately. This can be done by modifying the moments and forces from a
plastic analysis by multiplying by A/2. This is a method allowed in BS 5950-1
Clause 5.3.1 for calculating the bending moments for out-of-plane buckling.
Where this method is used, it must be remembered that the plastic hinges will
occur unless they can be proved not to occur. This can only be done by elastic
unloading calculations unless the reduction by Ar /A is clearly very large.
Unless the plastic hinges are demonstrated not to occur, the stability of the
members must be demonstrated assuming plastic hinges occur at the same points
as in the bending moment diagram at collapse.
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The  bending  moment near the mid-length of  the rafter approaches the  moment 
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effective length (i.e. ignoring the increase in section properties of the haunch), 
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design 

6.4.1 General 
Where the in-plane stability of individual members of a frame should be 
checked (see Section 6.3), the bending  moments  can  be  found directly from 
elastic-plastic analysis. 

Where elastic-plastic analysis has not been used, the moments may be calculated 
approximately. This can  be  done by modifying the moments and forces from a 
plastic analysis by multiplying by A/& This is a method  allowed in BS 5950-1 
Clause  5.3.1 for calculating the bending moments for out-of-plane buckling. 
Where this method is used, it must  be remembered that  the plastic hinges will 
occur unless they can be proved not to occur. This can only be done by elastic 
unloading calculations unless the reduction by //& is clearly very large. 
Unless the plastic hinges are  demonstrated not to occur, the stability of  the 
members must  be demonstrated  assuming plastic hinges occur at  the same points 
as in the bending  moment  diagram at collapse. 

57 



6.4.2 Sway-check and amplified moments methods
The bending moments around the frame at ULS, excluding the moments from
strut action, may be calculated as given below.

Where the analysis is by elastic-plastic analysis, the bending moment diagram
may be calculated by interpretation between the bending moments at the load
steps above and below ULS.

For other analysis techniques, the moments may be calculated approximately
(see Section 6.4.1) as:.

2
M = M1 x_L

where:

M is the design ULS moment at any point

M1 is the bending moment at that point from the first-order plastic analysis

2. is the required load factor (see below)

2, is the collapse factor from first-order plastic analysis.

The values of 2. are given by:

(a) Sway-check method: Gravity loads

BS 5950-1 Section 5.5.4.2.2 gives:

= 1.0 (see Section 3.3.2 and Section 3.4.2)

(b) Sway-check method: Horizontal loads

BS 5950-1 Section 5.5.4.2.3 gives:

= 2/(2 - 1)
where:

may be recalculated for each load case, see Section 3.3.3 and
Section 3.4.3

(c) Amplified moments method

BS 5950-1 Section 5.5.4.4 gives:

if 2�10: 2. = 1.0

0.92
if 10 > 2cr � 4.6: 2. = ______

2cr —1

where:

2, may be recalculated for each load case, see Section 4. 1.
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Where the analysis is  by elastic-plastic  analysis, the bending moment diagram 
may be calculated by interpretation  between the bending moments at the  load 
steps above and below ULS. 

For  other  analysis  techniques, the moments may be calculated  approximately 
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Ar M = M , x -  
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where: 

M is the design ULS moment at any point 

M ,  is  the bending moment at that point  from the first-order plastic analysis 

/2, is the required load factor  (see below) 

4 is the collapse  factor  from  first-order  plastic  analysis. 

The  values of /2, are given by: 

(a) Sway-check  method:  Gravity  loads 

BS 5950-1 Section 5.5.4.2.2 gives: 

n, = 1.0 (see Section  3.3.2  and  Section  3.4.2) 

(b) Sway-check  method:  Horizontal  loads 

BS 5950-1 Section 5.5.4.2.3 gives: 

/2, ASJ(ASC - 1) - - 

where: 

A,, may  be recalculated for  each load case, see Section 3.3.3 and 
Section 3.4.3 . 

(c) Amplified  moments  method 

BS 5950-1 Section 5.5.4.4 gives: 

if A,, 2 10: n, = 1.0 

where: 

Acr may  be recalculated for  each load case, see Section 4.1. 
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6.4.3 Second-order analysis by iterative methods
The bending moment diagram may be calculated by interpolation between the
moments calculated at the load steps above and below ULS.

6.4.4 Second-order analysis 'by hand'
The bending moments for frames analysed by the 'hand' methods of Section 5
and Section 6 may be calculated as:

M = MI/AM

where:

M is the design bending moment at ULS at any point excluding the
effects of strut action

M1 is the bending moment at that point in the plastic collapse mechanism

AM is defined and the value of 2M calculated in Appendix A and
Appendix B. Note that Ar/AM is equivalent to A. in Section 6.3.2.

6.5 Bending moments for frames using elastic
design

BS 5950-1 Clause 5.5.2 required that the bending moments should be taken as
the values from linear elastic analysis multiplied by the required load factor Ar.

Where the linear elastic analysis is first-order analysis, the values of A1 may be
determined either by the sway-check method or the amplified moments method.

Where the linear elastic analysis is second-order analysis, the value of A. may
be taken as 1.0

6.6 Other member checks
Portal frames must satisfy all the relevant requirements of BS 5950-1, including
out-of-plane buckling checks. However, the purpose of this publication is to
give guidance on the in-plane stability of portal frames, so detailed guidance on
other checks is not included.
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APPENDIX A Second-order analysis of
common portals 'by hand'

A.1 Range of application and design steps
This Appendix shows how second-order analysis may be performed without
second-order software for common forms of portal frames designed by plastic
design methods. These portals do not have ties at or near the rafter level.
Portals with ties at or near the rafter level should be checked using Appendix B.
It is recommended that this method is not used for frames for which the
deflection from a sway-check exceeds h1500, as explained in Section 5.4.3.

Design steps
The design steps are as follows:

1. Identify from the first order analysis:

• the plastic collapse mechanism

• the hinge incremental rotations

• the axial forces in the members

• the load factor at the formation of the first hinge, A (excluding hinges at
bases where the moment of resistance of the base is less than the moment
of resistance of the columns)

• the plastic collapse factor, A,,

• the deflections of the frame at ,.

2. Calculate the second-order deflections of the 'elastic' frame.

(a) Calculate the stiffness reduction factors to allow for P. ô (P-little delta)
effects

(b) Calculate the second-order magnification factors for the 'elastic' frame

(c) Calculate the deflections of the 'elastic' frame. These are the values of
the deflections at Ai magnified to account for second-order effects.

3. Calculate the second-order deflections of the 'plastic' frame

(a) Calculate the stiffness reduction factors to allow for P. ô (P-little delta)
effects

(b) Calculate the second-order magnification factor for the 'plastic' frame.

(c) Calculate the deflections of the 'plastic' frame from gravity loads.

(d) Calculate the deflections of the 'plastic' frame from horizontal loads.

4. Calculate the increased axial loads in the rafters to account for second-
order effects.

5. Sum the energies.

6. Calculate the reserve factor, AM.

7. Check that 2M � 1.0
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second-order software for common  forms of portal frames designed by plastic 
design methods.  These portals do not  have ties at  or near the rafter level. 
Portals with ties at  or near the rafter level should be  checked using Appendix B. 
It  is recommended that this method is not used  for  frames for which  the 
deflection from a sway-check exceeds h/500, as explained in Section 5.4.3. 

Design steps 

The design steps are  as follows: 

1. Identify from the first order analysis: 

the plastic collapse mechanism 

0 the hinge incremental rotations 

0 the axial forces in the members 

0 the load factor at the formation of the first hinge, A, (excluding hinges at 
bases where the moment of resistance of the base is less than  the moment 
of resistance of the columns) 

0 the plastic collapse factor, .2, 
0 the deflections of  the frame at Al. 

2. Calculate the second-order deflections of the ‘elastic’ frame. 

(a) Calculate the stiffness reduction factors to allow for P. S (P-little delta) 
effects 

(b) Calculate the second-order magnification factors for the ‘elastic’ frame 

(c) Calculate the deflections of  the ‘elastic’ frame.  These are the values of 
the deflections at AI magnified  to account for second-order effects. 

3. Calculate the second-order deflections of  the ‘plastic’ frame 

(a) Calculate the stiffness reduction factors to allow for P. S (P-little delta) 
effects 

(b) Calculate the second-order magnification factor for the ‘plastic’ frame. 

(c) Calculate the deflections of the ‘plastic’ frame  from gravity loads. 

(d) Calculate the deflections of  the ‘plastic’ frame  from horizontal loads. 

4. Calculate the increased axial loads in the rafters to account for second- 
order effects. 

5 .  Sum the energies. 

6. Calculate the reserve factor, AM. 
7. Check that A,,,, 2 1.0 
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A.2 Basis of method
A.2.1 General
In this method, the load factor of the frame is calculated by the energy method,
allowing for any strength reduction caused by second-order stability effects. It
is derived from the plastic collapse load factor A calculated by first-order
analysis.

This load factor may be called the 'reserve factor at ULS', 2M, defined as:

= V2PWLS)

VULS

where:

V2,p(ULS) is the load predicted to cause failure of the frame including the
second-order effects, but calculated using the axial forces in the
members at the ULS level of load.

VULS is the ULS load on the frame.

The factor, AM, allows for the de-stabilising effects on the frame of second
order effects, including both P.5 effects and P.4 effects described in
Sections 2.4.2 and 2.4.3 respectively. The P.S and P.4 effects are calculated
using the axial forces that occur in the frame at ULS, including the
second-order effect of any drop of the apex of the frame.

This reserve factor, 2M, must be equal to or greater than 1.0 to demonstrate that
the frame is stable at ULS.

The reserve factor 2M is not exactly the same as the failure factor, commonly
referred to as except in the case where 2M = 1.0. This is because A.f is
defined as:

Vf
2f

VULS

where:

Vf is the failure load including second-order stability effects

VULS is the ULS load on the frame.

The failure load Vf is calculated using the axial forces at failure and, therefore,
the P.S effects arising from the axial forces at failure. This contrasts with /%M
which is calculated using the P.S effects from the axial forces at ULS. Where
the loading at ULS is equal to the loading at failure, 2M is equal to 2.

The method uses the plastic collapse mechanism found by first-order analysis.
This is sufficiently accurate because there is very little difference between the
bending moment diagrams from first-order and second-order analysis. The
plastic hinges limit the bending moment diagram and prevent any significant
change of curvature along the members between the plastic hinges. Therefore,
the energy calculation can be made using only the deflections arising from the
rigid-body motions of the elements between the hinges. The energy calculation
is made using the deflected form of the plastic collapse mechanism to calculate
the second-order effects. The stiffness reduction to allow for P.S (P-little delta)
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effects, as described in Section 2.4.2 is made using the axial forces at ULS
calculated from first-order analysis.

This method is called a 'hand' method because it is possible to perform the
second-order analysis by this method without a computer. However, it will be
much easier if computer software is used for various steps, such as calculating
the deflections of the two different structure models used in the method. Hand
calculations will still be required to prepare the input data and combine the
output data.

A.2.2 Application of the energy method
The basis of the energy calculation is shown in Figure A. 1. An increment of
deflection is considered at the formation of the collapse mechanism. The strain
energy dE, absorbed over this increment of deflection can be calculated from the
rotation of the hinges:

dE = Mprd8

The potential energy released by second-order effects can be calculated from the
rigid body rotations as shown in Figure A.2.

dE2 P2 (çbsdqS)

dE1 + E2 = dE,

Load

A1
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dEp2

dEp1

Deflection

Figure A. 1 Energy over an increment of deflection at collapse

effects, as described in Section 2.4.2  is made using the axial  forces  at ULS 
calculated  from  first-order  analysis. 

This method is called  a  ‘hand’ method because it is possible to  perform the 
second-order  analysis by this method without  a  computer.  However,  it will  be 
much easier if computer  software  is used for  various  steps,  such  as  calculating 
the deflections of  the two different  structure models used in the method. Hand 
calculations will still be required to prepare the input  data  and combine the 
output  data. 

A.2.2 Application of the  energy  method 

The  basis of the energy  calculation  is  shown  in  Figure A. 1 .  An increment of 
deflection  is  considered  at the formation of  the collapse  mechanism.  The  strain 
energy dE, absorbed  over  this  increment of deflection  can be calculated  from the 
rotation of the hinges: 

dE, = C MPr dB 

The  potential  energy  released by second-order  effects  can be calculated  from the 
rigid body rotations  as shown in Figure  A.2. 

4 

Deflection 

Figure A . l  Energy  over  an  increment of deflection at collapse 
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The potential energy released by the loads at failure can be calculated from:

dE1 = AMWz1

Therefore the conservation of energy that is:

dE1 + dE2 = dE, can be written as:

2MWA + P2 sdq5 = Mpcd8

where:

2M is the reserve factor on the collapse mechanism at ULS (see
Section 5.2.1)

w is the set of applied loads at ULS

LI is the set of incremental displacements of the applied loads in the
collapse mechanism including the P.S (P-little delta) effects.

P2 is the set of axial forces in the members at ULS including
second order effects.

s is the set of member lengths

q$ is the set of member rotations at the onset of the collapse mechanism
allowing for the reduced stiffness of the members due to P.S (P—little
delta) effects

dØ is the set of incremental member rotations in the collapse mechanism

Mpr is the set of plastic moments of resistance reduced by co-existent axial
force from first-order analysis

dG is the set of incremental hinge rotations in the collapse mechanism.

that in the first-order collapse analysis:

= M4O
giving:

M dO= p

P.

S

P

Figure A.2 Potential energy release from second-order effects

Noting

2wA
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P 

Figure A.2 Potential energy  release from second-order effects 

The potential energy released by  the loads at failure can be calculated from: 

dE,, = AMCWA 

Therefore the conservation of energy that  is: 

dEpl + dEp2 = dE, can  be written as: 

&CWA + CP, 4 Sd+ = CM,,dB 

where: 

A M  

W 

A 

p2 

S 

4 

d 4  

MP' 

d B  

is the reserve factor on the collapse mechanism at ULS (see 
Section 5.2.1) 

is the set of applied loads at ULS 

is the set of incremental displacements of  the applied loads in the 
collapse mechanism including the P. 6 (P-little delta) effects. 

is the set of axial forces in the members at ULS including 
second  order effects. 

is the set of member lengths 

is the set of member rotations at the onset of  the collapse mechanism 
allowing for the reduced stiffness of the members  due to P. 6 (P-little 
delta) effects 

is the set of incremental member rotations in the collapse mechanism 

is the set of plastic moments of resistance reduced by co-existent axial 
force  from first-order analysis 

is the set of incremental hinge rotations in the collapse mechanism. 

Noting that in  the first-order collapse analysis: 

~ C W A  = CM,d6' 

giving: 

CM,, d e  

A P  

CWA = 
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the requirement can be expressed as:

>M 1d0 +P2dØ = 2MprdO
2p

or

2M
__(MprdG) = MdOP2çbsdØ

Thus

2M = 2 1P2q$sdq$
Mprd8

The minimum acceptable load factor at failure, 2M is 1.0 for any load
combination.

This method of calculating 2M is used in the worked examples.

A.2.3 Deflection calculations
The accuracy of the calculation depends on the angles q5 shown in Figure A.2.
These deflections must allow for second-order effects, so wherever first-order
analysis is used, either the member stiffnesses must be reduced or the results
must be amplified.

This section shows how the deflections can be found with a combination of:

(1) 'Elastic frame' deflections

(ii) 'Plastic frame' deflections.

The 'elastic frame' deflections are the deflections of the frame at the load
factors, 2, at which the first hinge is about to form. The frame behaviour up
to this point is elastic.

The 'plastic frame' deflections are the deflections of the frame at load factors
above 2. This means that the first hinge has formed and the frame is partially
plastic.

To make the calculation as simple as possible, it is most convenient to assume
that all the plastic hinges (except the final hinge that forms in any span to create
the collapse mechanism) occur at load factor 2. The deflected form of a
typical 2-bay frame is shown in Figure A.3.
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the requirement  can be expressed  as: 

-(CM,,dB) Ah4 = CM,,dB - CP2@d4 

Thus 

A, = A, [ l -  CP2 @d4 
CM,, dB 

The minimum acceptable load factor at failure, AM, is 1.0 for any load 
combination. 

This method of calculating AM is used in the worked  examples. 

A.2.3 Deflection  calculations 

The  accuracy of  the calculation  depends on the angles 4 shown in Figure  A.2. 
These  deflections must allow  for  second-order  effects, so wherever  first-order 
analysis is used,  either the member stiffnesses must be reduced or the results 
must be amplified. 

This  section  shows how  the deflections  can be found with a  combination of 

(i) ‘Elastic  frame’  deflections 

(ii)  ‘Plastic  frame’  deflections. 

The  ‘elastic  frame’  deflections  are the deflections of  the frame  at the load 
factors, A I ,  at which the first hinge is about to  form.  The  frame  behaviour up 
to  this point is  elastic. 

The ‘plastic frame’  deflections  are the deflections of  the frame  at  load  factors 
above i l l .  This means that the first hinge has formed and the frame is partially 
plastic. 

To make  the calculation  as  simple as possible, it is most convenient to assume 
that all  the plastic hinges (except the final hinge that forms in any span to create 
the collapse mechanism) occur  at load factor Al.  The  deflected  form of a 
typical 2-bay frame  is shown in Figure  A.3. 
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öEp3

In Figure A .7, 5p1, 8EP2 and 8EP3 are the sums of the elastic deflections and
the deflections after the plastic hinges have formed. The sum of the deflections
comprises:

(i) The 'elastic frame' deflections at load factor 2.

(ii) The 'plastic frame' deflections from load factor 2 to load factor A, using
an elastic structure model with pins at the position of the plastic hinges.

The deflections are calcu'ated by elastic analyses, as described in
Appendices A.3 and A.4.

A.2.4 Base stiffness
BS 5950-1 Clause 5.1.3 gives guidance on the base stiffness that may be
assumed in design. The provisions for ULS analysis may be used in the
analysis model. It is important to note that the second-order analysis uses the
stiffness of the frame at ULS, so only the ULS base stiffness values may be
used, not the SLS values.

Therefore the following base stiffnesses may be used:

Base with a pin or rocker
The base stiffness should be taken as zero.
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Undeflected form

Elastic deflections

öEP2

Elastic-plastic deflections

Figure A.3 Deflections of typical frame

Undeflected form 

Elastic deflections 

Elastic-plastic  deflections 

Figure A.3 Deflections of  typical frame 

In  Figure A.7, &l, &2 and &,3 are the sums of the elastic deflections and 
the deflections after the plastic hinges  have formed. The sum of  the  deflections 
comprises: 

(i) The ‘elastic frame’ deflections at load factor i l l .  

(ii) The ‘plastic frame’ deflections from load factor i l l  to load factor 4, using 
an elastic structure model  with  pins  at  the position of  the  plastic hinges. 

The deflections are calculated by elastic analyses, as described in 
Appendices A.3  and  A.4. 

A.2.4 Base stiffness 
BS 5950-1 Clause 5.1.3 gives guidance on the  base stiffness that  may be 
assumed in design. The provisions for ULS analysis may  be  used  in  the 
analysis model. It is important to  note  that  the second-order analysis  uses  the 
stiffness of  the frame  at  ULS, so only  the ULS base stiffness values  may  be 
used, not the SLS values. 

Therefore the following base  stiffnesses  may  be  used: 

Base with a pin or  rocker 

The base stiffness should be  taken as  zero. 
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Nominally pinned base
If a column is nominally pin-connected to a foundation assuming that the base
moment is zero, the base should be assumed to be pinned in the global analysis.
Therefore, where the moment applied to the foundation is required to be zero,
the 10% column stiffness value cannot be applied in the global analysis.
However, the 10% column stiffness can be used in the calculations of stability
functions that allow for P.S (P—little delta) effects. This is the reason for the
reduction of the effective length of columns when calculating Per in A.3.2,
which is also referred to in B.3.2. The reduction of effective length is also
applicable in the internal column in-plane checks recommended in Section 6.

Nominally semi-rigid base
A nominal base stiffness of up to 20% of the column stiffness may be assumed
for the ULS calculations, provided that the foundation is designed for the
moments and forces obtained in the analysis.

Nominally rigid base
The base stiffness should be taken as equal to the column stiffness and the
foundation must be designed to resist moments from all load cases.

A.3 Deflections of the 'elastic' frame
A.3.1 General
The deflections of the frame will be elastic until the first hinge forms at a load
factor 2. The deflections are referred to as the 'elastic frame' deflections.

The value of ,% may be given by elastic-plastic analysis software or it may be
calculated from an elastic analysis of the frame. The load factor 2 is the
lowest load factor at which the applied bending moment at any section of the
frame reaches the plastic moment of resistance, as Clause 4.8.2.3 of BS 5950-1.

The second-order deflections are calculated using the equation from
Section 2.4.3:

= 811 2cri 2c
2cri _1) cr2 —1

Vertical deflections and eaves spread deflections are generally similar to the
symmetrical mode of buckling of the frame, so vertical and spread deflections
are treated as 52 above. Sway deflections are generally similar to the sway
mode of buckling of the frame, so sway deflections are treated as 8 above.

A.3.2 Reduction factor to allow for P.o (P—little delta) effects
The second-order effects within the member lengths reduce the effective
stiffness of the members, and this effect must be included in the analysis from
which the deflections are found. This is done by calculating a reduction factor
and then applying it to the gross inertia to give an effective inertia value for the
members, Jeff.
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Nominally  pinned  base 

If a  column  is  nominally pin-connected to  a foundation assuming that the base 
moment is zero, the base should be  assumed to be  pinned  in  the global analysis. 
Therefore,  where the moment applied to the foundation is required to be zero, 
the 10% column stiffness value cannot  be applied in the global analysis. 
However, the 10% column stiffness can be  used in the calculations of stability 
functions that allow for P.6 (P-little delta) effects.  This  is the reason for the 
reduction of the effective length of columns when calculating PCr in A.3.2, 
which is  also  referred to in B.3.2. The reduction of effective length is also 
applicable in the internal column in-plane checks recommended  in Section 6. 

Nominally  semi-rigid  base 

A nominal  base stiffness of up to 20% of the column stiffness may  be  assumed 
for the ULS calculations, provided that the foundation is designed for the 
moments and  forces obtained in the analysis. 

Nominally  rigid  base 

The base stiffness should  be taken as  equal to the column stiffness and the 
foundation must  be  designed to resist moments from all load cases. 

A.3 Deflections of the ’elastic’ frame 
A.3.1 General 

The deflections of the frame will  be elastic until the first hinge forms at a load 
factor Al .  The deflections  are  referred  to as the ‘elastic frame’ deflections. 

The value of AI may be given  by elastic-plastic analysis  software or it may  be 
calculated from  an  elastic analysis of the frame.  The load factor A, is the 
lowest load factor at which the applied bending  moment at any section of  the 
frame reaches the plastic moment of resistance, as Clause 4.8.2.3 of BS 5950-1. 

The  second-order deflections are calculated using the equation from 
Section 2.4.3: 

Vertical deflections  and  eaves  spread deflections are generally similar to the 
symmetrical  mode of buckling of the frame, so vertical and spread deflections 
are treated as 6 2  above. Sway deflections are generally similar  to the  sway 
mode  of  buckling  of the frame, so sway deflections are treated as S ,  above. 

A.3.2 Reduction  factor  to  allow  for P.6 (P-little  delta)  effects 

The  second-order  effects within the member lengths reduce the effective 
stiffness of the members, and this effect must be included in the analysis from 
which the deflections are found. This  is  done by calculating a reduction factor 
and then applying it  to the gross  inertia  to give an effective inertia value for the 
members, Z e ~ .  
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Rafters:

Reduction factor (1 — PULS/PCr

where:

PULS is the axial compressive force in the member from ULS loads
calculated by first-order analysis. Ps may be calculated by elastic
analysis, plastic analysis or elastic-plastic analysis. A consistent set of
forces from any of these analyses should be used throughout the
frame. Where columns support intermediate loads, for example from
cranes or mezzanine floors, these intermediate loads must be included
in PULS.

Per is taken as 7t2EI/L2

where:

L = L, the developed length of the rafters in the relevant span, see
Figure 3.8 for both the elastic frame and the 'plastic frame in
multi-span frames and the 'plastic' frame for single-span frames.

L = 0.5Lr for single span 'elastic' frames only.

Hence, 'eff = I (1 PuLs/Per)

Columns:

Reduction factor = (1 — PULS/Pcr

where:

PULS is as defined for rafters

Per is taken as 7c2E1/(ah)2

where:

h is the height from the base to the neutral axis of the rafter

a = 2.0 for columns with truly pinned bases or rockers

a = 1.7 for colunms with nominally pinned bases

a = 1.4 for columns with nominally fixed bases.

Hence, 'eff = 1 (1 — PVLS/Pcr)

A typical column supporting rafters at different levels is shown in Figure A.8.
The appropriate values of PULS and P, are those in the greater of

ULS ULSor
cr A '3cr B

where:

ULS

1cr A 7r2E1

(ahA)
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Rafters: 

Reduction factor = (1 - PuLs/Pc, 

where: 

PuLs is the axial compressive force in  the member from ULS loads 
calculated by first-order analysis. Pas may  be  calculated  by elastic 
analysis, plastic analysis or elastic-plastic analysis. A consistent set of 
forces  from any of  these analyses should be  used throughout the 
frame. Where columns  support intermediate loads, for example from 
cranes or mezzanine floors, these intermediate loads  must  be  included 
in PuLs. 

P,, is taken as n2EIIL2 

where: 

L = L,, the developed length of the rafters in the relevant span, see 
Figure 3.8 for both the elastic frame  and the ‘plastic frame in 
multi-span frames and the ‘plastic’ frame for single-span frames. 

L = O X ,  for single span ‘elastic’ frames only. 

Hence, Ieff  = I (1 - PULS/Pcr) 

Columns: 

Reduction factor = (1 - PuLs/P,, 

where: 

PuLs is  as defined for rafters 

P,, is taken as n2EIl(ah)’ 
where: 

h is the height from the base to the  neutral axis of  the rafter 

a = 2.0 for  columns with truly pinned bases or rockers 

a = 1.7 for  columns with  nominally pinned bases 

a = 1.4 for columns with  nominally fixed bases. 

Hence, Ieff  = I (1 - PuLs/P,,) 

A typical column supporting rafters at different levels is shown in Figure A.8. 
The appropriate values  of PuLs and P,, are those in the greater of 

where: 
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ULS — (PA +PB)

cr )B
—

2EI
(ahB)

PA is the axial compression in the column between the higher and the
lower rafters

PA + PB is the axial compression in the colunm between the lower rafter
and the base

hA is the column height from the base to the higher rafter

hB is the column height from the base to the lower rafter.

+

PBflI
Figure A.4 Column supporting rafters at different levels

For columns supporting intermediate vertical loads such as crane loads and
mezzanine floors without continuous connection into the column, the maximum
column force should be used.

A.3.3 Second-order magnification factors, AcrI(Acr 1)
Vertical deflections and eaves spread deflections

The second-order deflections are greater than the first-order deulections, ô, by
the factor 2cr2!(Acr2 — 1).

'cr2 is taken as the minimum of either:

the minimum value of Pcr/PULS for any pair of rafters, where P. and PULS are
taken as for rafters in A.3.2., or

Pcr/PULS for the columns

where:

is the sum of the values of PCr for all the columns in the frame, where
P is taken as for columns in A.3.2

PULSis the sum of the axial forces in all the columns in the frame.

Sway deflections

The second-order deflections are greater than the first-order deflections, ôi, by
the factor 2cri/('cri - 1)

Acri is taken as the minimum value of h1200 ô2

where:
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PA is the axial compression  in the column between the higher  and the 
lower  rafters 

PA + PS is  the axial compression  in the column between the lower  rafter 
and the base 

hA is the column height from the base to the higher  rafter 

hB is the column height from the base to the lower  rafter. 

Figure A.4 Column  supporting  rafters at different levels 

For  columns  supporting  intermediate  vertical loads such  as  crane  loads  and 
mezzanine floors without continuous  connection into the column, the maximum 
column  force should be used. 

A.3.3 Second-order  magnification  factors, 12cr/(r2cr -1 ) 
Vertical  deflections  and  eaves  spread  deflections 

The  second-order  deflections  are  greater than  the first-order  deflections, S,, by 
the factor Acr2/(Acr2 - 1). 

Acr2 is taken as the minimum of either: 

the minimum value of Pc,/Puls for  any  pair of rafters, where PCr and Pas are 
taken  as  for  rafters in A.3.2. ,  or 

CP,,ICPuLs for the columns 

where: 

P,, is the sum of  the values of P,, for all the columns  in the frame, where 
P,, is taken as for  columns in A.3.2 

CPuLs is the  sum  of  the axial forces  in all the columns in the frame. 

Sway deflections 

The  second-order  deflections  are  greater than the first-order  deflections, 61, by 
the factor Acrl/(Acrl - 1) 

Acrl is taken as the minimum value of h/200 S,,, 

where: 
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h is the height of any column, as A.3.2.

42 is the sway deflection of the frame with member inertias 'eff calculated
as in A.3.2, loaded only with notional horizontal forces, as defined in
Section 1.6 and applied as in Section 3.3. O2 can be calculated from
the simplified 'elastic' frame method in Appendix D using the values
of Jeff.

A.3.4 Calculation of deflections
The first-order deflections are calculated using the gross I values.

Where elastic-plastic analysis is used, the deflections at the load factor of the
first hinge, 2, is given directly by the software. The structural model for the
elastic analysis must use the same member and base stiffnesses appropriate to
ULS analysis, not to SLS analysis. Base stiffness values are given in A.2.4.

The loads applied to the elastic frame are A x (ULS loads), which is a set of
loads in the same proportions as the ULS loads. It is recommended that
software be used for the deflection calculations of the 'elastic frame' because
hand calculations for portals is a long process.

The second-order deflections, (OX2, OY2), are calculated from the first-order
deflections, (OX1, OY1), as follows:

OX2 = (0X1 OXis) {Acr2/(Acr2 —1)} + OXis {Acri/(Acri 1)}

OY2 = OY1 {Acr2I(Acr2 1)}

where:

A11 and Acr2 are calculated as in A.3.3

OX. are the sway deflections from the horizontal component of externally
applied loads resisted by the 'elastic' frame, A HULS,

where:

) is the load factor at the formation of the first plastic hinge

HULS is the nett horizontal component of the ULS loads. This includes the
notional horizontal forces where they are applied in a load case.

A.4 Deflections of the 'plastic' frame
A.4.1 General
To simplify the calculations, this method assumes that all the spans develop
plastic hinges at one end at the load factor at which the first hinge forms in
the frame. Then the analysis model becomes an elastic frame with a hinge at
(or near) the end of each span as shown in Figure A.3. The pins are used at
the plastic hinges because at a pure plastic hinge there is no increase of bending
moment.
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h is the height of any column, as A.3.2. 

S,, is  the sway deflection of  the frame with member inertias Iesf calculated 
as in A.3.2,  loaded only with  notional horizontal forces,  as defined  in 
Section 1.6 and applied as in Section 3.3. S,,, can be  calculated from 
the simplified ‘elastic’ frame method in Appendix D using the values 
of Iess. 

A.3.4 Calculation of deflections 

The first-order deflections are calculated using  the gross I values. 

Where elastic-plastic analysis is used, the deflections at the  load factor of  the 
first hinge, A,, is given directly by  the software.  The structural model for the 
elastic analysis must use  the same member and base  stiffnesses appropriate to 
ULS analysis, not to SLS analysis. Base stiffness values are given  in A.2.4. 

The loads applied to  the elastic frame  are 1, x (ULS loads), which  is a set of 
loads in the same proportions as the ULS loads. It  is recommended that 
software be  used for the deflection calculations of  the  ‘elastic frame’ because 
hand calculations for portals is a long process. 

The second-order deflections, (a,, SY,), are calculated from the first-order 
deflections, (al, SY,), as follows: 

where: 

Jcrl and Jcr2 are calculated as in A.3.3 

a,, are the sway deflections from the horizontal component of externally 
applied loads resisted  by  the  ‘elastic’ frame, AI HULs, 

where: 

is the load factor at the formation of  the first plastic  hinge 

HuLs is the nett horizontal component of  the ULS loads. This includes  the 
notional horizontal forces where they are applied in a load case. 

A.4 Deflections of the ‘plastic‘ frame 
A.4.1 General 

To simplify the calculations, this method assumes that all the  spans develop 
plastic hinges at one  end at the  load factor i l l  at which  the first hinge forms in 
the frame.  Then the analysis model becomes an elastic frame with a hinge at 
(or near) the end of each span as shown in Figure A.3. The pins are used  at 
the  plastic hinges because at a pure plastic hinge there  is no increase of  bending 
moment. 
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This mode of deflection is a sway mode, even for gravity loads, so all the
second-order deflections are calculated from the magnification arising from the
sway mode of buckling. Therefore, the equation in Section 2.4.3 reduces to:

ôv = ô1 {Acr/(Acr1)}

A.4.2 Reduction factor to allow for P.8 (P—little delta) effects
The second-order effects within the member lengths reduce the effective
stiffness of the members. This effect must be included in the analysis. This is
done by calculating effective inertia values for the members, Jeff, as for the
'elastic' frame' in A.3.2 above.

A.4.3 Second-order magnification factor, )t.crp/(?.crp—l)
The second-order deflections are greater than the first-order deflections, ô1, by
the factor A/(A—1).

A is taken as the minimum value of h/200 for the 'plastic' frame

where:

h is the height of any column, as A.3.2.

ô, is as defined for 2 A.3.3 but for the 'plastic' frame. This can be
calculated from the simplified 'plastic' frame method in Appendix D.

A.4.4 Calculation of deflections
The loads applied to the 'plastic frame' must be the difference between the
collapse loads, A,, x (ULS loads), and the loads resisted by the 'elastic frame'.
Therefore the loads to be applied to the 'plastic frame' are (2 — 2) x (ULS
loads).

Typical deflections due to gravity loads alone are shown in Figure A.5. Note
that the frame sways under gravity loading plus notional horizontal forces. This
is partly due to the direct effect of the notional horizontal forces and partly
because the notional horizontal forces causes the hinge to appear on one side
only, creating an asymmetric frame that results in sway.

In the absence of a more detailed analysis, the hinges in the 'plastic frame'
model should be assumed to be asymmetric, as in Figure A.6, to avoid
unconservative deflections at collapse load.
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Figure A.5 Typical deflection of a 'plastic frame'

This mode  of deflection  is  a sway mode,  even  for  gravity  loads, so all the 
second-order  deflections  are  calculated  from the magnification  arising  from the 
sway mode of buckling.  Therefore, the equation in Section 2.4.3 reduces to: 

A.4.2 Reduction  factor  to  allow  for P.6 (P-little  delta)  effects 

The  second-order  effects within the member  lengths  reduce the effective 
stiffness of  the members.  This  effect must be included in the analysis.  This  is 
done by calculating  effective  inertia  values  for the members, LR, as  for the 
‘elastic’  frame’ in A.3.2 above. 

A.4.3 Second-order  magnification  factor, Acrpl(Acrp -1) 
The  second-order  deflections  are  greater than the first-order  deflections, SI, by 
the factor A,,/(&, -1). 

&, is taken as the minimum value of h/200 S,,, for the ‘plastic’  frame 

where : 

h is the height of any column,  as A.3.2. 

S,,, is as defined  for & A.3.3 but  for the ‘plastic’  frame.  This  can be 
calculated  from the simplified  ‘plastic’  frame method in Appendix D. 

A.4.4 Calculation  of  deflections 

The  loads applied to the ‘plastic frame’ must be  the difference between the 
collapse  loads, /2, x (ULS loads),  and the loads resisted by  the ‘elastic  frame’. 
Therefore the loads to be applied  to the ‘plastic  frame’  are (Ap - A,) x (ULS 
loads). 

Typical  deflections due to  gravity  loads  alone  are shown in Figure  A.5. Note 
that the frame sways under gravity  loading  plus notional horizontal  forces.  This 
is partly due to the direct  effect of  the notional horizontal  forces  and partly 
because the notional horizontal  forces  causes the hinge to appear on one side 
only,  creating an asymmetric  frame that results in sway. 

Figure A.5 Typical  deflection of a ‘plastic frame‘ 

In  the absence of a more detailed analysis, the hinges in  the ‘plastic  frame’ 
model should be assumed to be asymmetric,  as in Figure A.6, to avoid 
unconservative  deflections  at  collapse  load. 
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A.4.5 The 'plastic frame' resisting vertical loads
The deflections from 2 to 2, are calculated by simple beam theory based on
simply supported beams because the plastic hinges mean that there can be no
increase in end moments of the rafters. To simplify the calculations, this 'hand'
method assumes that all rafters will behave as simply supported beams from
load factor 2.

The horizontal deflections 8EP1 due to gravity load result from the end rotation
of the rafters. For simplicity, this method takes the maximum sway deflection
arising from any span. If a frame analysis is performed with a pin at the hinge
positions, a less conservative result may be obtained.

The load on the span at ULS is WULS and the load applied to the span on the
elastic frame is WE. Therefore, the load to be applied to the 'plastic frame'
Wp = 2p WULS - WE.

The column top displacement for the external colunm/rafter that remains elastic
is governed by the rafter end. The rafter end rotation is approximately the
same as for a simply supported beam of the same developed length, S, as shown
in Figure A.7.

o

hO
Figure A.7 Column top displacement

For simplicity, the calculations are based on the deflections of a symmetrical
pitched roof, but the method may be used for other geometries.

-
Figure A.6 Typical design hinge pattern for a 'plastic frame'

h
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Figure A.6 Typical design hinge  pattern  for  a  ’plastic  frame’ 

A.4.5 The ’plastic  frame’  resisting  vertical  loads 

The deflections from AI to ;lp are calculated by simple beam theory based on 
simply supported beams  because the plastic hinges mean that there can be  no 
increase in end  moments of the rafters. To simplify the calculations, this ‘hand’ 
method  assumes that all rafters will behave  as simply supported beams  from 
load factor A l .  

The horizontal deflections &pl due to gravity load result from the end rotation 
of  the rafters. For simplicity, this method takes the maximum sway deflection 
arising from  any span. If a  frame analysis is performed with a pin at the  hinge 
positions, a less conservative result may be obtained. 

The load on the span at ULS is wuLs and the load applied to  the span  on the 
elastic frame is wE. Therefore, the load to be applied to the ‘plastic frame’ 
w p  = hp WULS - WE. 

The  column top displacement for the external columdrafter that remains elastic 
is governed by  the rafter end.  The rafter end rotation is approximately the 
same as for a simply supported beam of  the same  developed length, S ,  as shown 
in Figure A.7.  

S 

Figure A.7 Column top displacement 
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For simplicity, the calculations are based  on the deflections of a symmetrical 
pitched roof, but  the method may be used for other geometries. 
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The second-order rafter end slope is given by:

6R2 =
ws3 2
24EJR 2crp —1

where:

S is the developed length of the rafter

Wp is the load on the span of the 'plastic frame'

WULS is the Ultimate Limit State load on the span

WE is the load applied to the 'elastic frame'

A is the plastic collapse factor

'R is the gross value of the major axis inertia of the rafter.

E is Young's modulus

A/(A—1) is the deflection magnification factor from A.4.3.

Note that w, WJLS and w1 here denote the component of load acting transverse
to the rafter measured as a distributed load along the developed length of the
rafter.

For vertical loads measured on plan, Wvplan, the component transverse to the
rafter is given by:

W = Cos2a

For vertical loads measured along the slope, Wv slope, the component transverse
to the rafter is given by:

W = Wvslope Cosa

where:

w is the set of loads w, W-S or w1

a is the slope of the rafter.

The second-order change of the column top deflections = h G
The spread of each span is calculated from the deflection of a simply supported
beam as shown in Figure A.8. The second-order midspan deflection of a
straight simply supported beam of length S carrying a distributed load w is
given by:

S = 5wS4 2crp
B2

3S4EIR crp —1

The spread of the rafter ends results from the deflection at the crank in the
rafter. The spread is given by:

Spread = 8B2 (Sina1+Sina2)

where;

a1 is the slope of one rafter in the span
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The  second-order  rafter  end slope is  given  by: 

where: 

S is the developed length of  the rafter 

wp is the load on the span of the ‘plastic  frame’ 

wuLs is the Ultimate Limit State load on the span 

wE is the load applied to the ‘elastic  frame’ 

;ip is the plastic  collapse  factor 

IR is the gross value of the major  axis  inertia of the rafter. 

E is Young’s modulus 

&,/(Acv-1) is the deflection  magnification  factor  from A.4.3. 

Note that wp, wuLs and w1 here denote the component of load  acting  transverse 
to the rafter  measured  as  a  distributed load along the developed  length of the 
rafter. 

For  vertical  loads  measured on plan, w,,plan , the component  transverse  to the 
rafter is given by: 

W =  wv.plan C0s2a 

For  vertical  loads measured along the slope, w,,,lope, the component  transverse 
to the rafter  is  given by: 

= Wv,,lope Cosa 
where: 

w is the set of loads wp, was or w1 

a is the slope of  the rafter. 

The  second-order  change of  the column top deflections = h & 

The  spread of each span is calculated  from the deflection of a simply supported 
beam as shown in Figure A.8. The  second-order midspan deflection of a 
straight simply supported beam of length S carrying  a  distributed load wp is 
given by: 

The  spread of  the rafter  ends  results  from the deflection  at the crank in the 
rafter.  The  spread is given by: 

Spread = &* (Sinal  +Sina2) 

where; 

aI is the slope of one rafter in  the  span 
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a2 is the slope of the other rafter in the span.

Note that there is no spread if the rafter is straight from column to column.

B

B Sifl a2j
Figure A.8 Rafter spread

A.4.6 The 'plastic frame' resisting horizontal loads
The sway deflections due to the notional horizontal forces or externally applied
horizontal loads are calculated assuming the reduced stiffness of the frame
following the formation of plastic hinges as shown in Figure A.9. The
formulae are derived in Appendix D.

The second-order sway stiffness of each bay is given by:

K is the sway stiffness of the span including second-order effects

52 is the sway deflection of the top of the column which does not have a
hinge in it or in the adjacent length of rafter including second-order
effects
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Figure A.9 Sway deflection model
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2

where:
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a2 is the slope of the other rafter in the span. 

Note that there  is no spread if the rafter is straight from column to column. 

Figure A.8 Rafter spread 

A.4.6 The 'plastic  frame'  resisting  horizontal  loads 

The sway deflections due  to the  notional horizontal forces or externally applied 
horizontal loads are calculated assuming the reduced stiffness of  the frame 
following the formation of  plastic hinges as shown in Figure A.9.  The 
formulae are derived in  Appendix D. 

Figure A.9 Sway deflection  model 

The second-order sway stiffness of each bay  is given by: 

1 1 1 K ,  = - - - X 

6 s  2 [g+$) [A::-l] 

where: 

K, is  the  sway stiffness of  the span including second-order effects 

4 2  is  the sway deflection of  the top of  the column which  does  not  have a 
hinge in it or in the  adjacent  length  of rafter including second-order 
effects 
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S is taken as Lr, the developed length of the rafter from support to
support where the support may be either a column or valley beam

h is the height of the column from the base to the neutral axis of the
rafter

'R and I are the gross values of the major axis inertias of the rafter and the
column

—1) is the second-order magnification factor from A.4.3.

The second-order least sway deflection of the top of the column in a frame may
be taken as:

(, —1)=

where:

H is the sum of the equivalent horizontal loads H resisted by the frame.
At each column, H is given by H = (H1h1)/h, as shown in Figure A.9

K is the sum of the sway stiffnesses allowing for second-order effects of
all the spans in the frame.

In addition to this sway deflection, there is an additional spread arising from the
angle in the rafter at the apex of the span. The second-order sagging deflection
of a straight rafter would be:

— ML 'crp
sm2 —

16EIR 2crp —1

where:

M is the moment caused by the horizontal loads resisted by the span and
is given by M Kzl2h

L. is the developed length of the rafter from colunm top to column top as
shown in Figure 2.5

AI(A —1) is the second-order magnification factor from A.4.3.

h3flJ
Figure A. 10 Horizontal forces and moments from horizontal forces
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H2 I1 :

S is  taken as L,, the developed length  of  the rafter from support to 
support where the support may  be either a column or valley beam 

h is  the  height  of  the column  from the  base  to  the  neutral axis of  the 
rafter 

ZR and Z, are the gross values of  the major axis inertias of  the rafter and the 
column 

Acw/(&,-l) is  the second-order magnification factor from  A.4.3. 

The second-order least  sway deflection of  the  top  of  the column in a frame may 
be taken as: 

b p  - 4 )CH 
A ,  = 

= K ,  

where: 

C H is the sum of  the equivalent horizontal loads H resisted by  the frame. 
At each column, H is given by H = C(Hih,)/h, as shown in Figure  A.9 

C K ,  is the sum of  the sway stiffnesses allowing for second-order effects of 
all the spans in  the frame. 

In addition to this sway deflection, there is an additional spread arising  from the 
angle in  the rafter at the apex of the span. The second-order sagging deflection 
of a straight rafter would be: 

where: 

M is the moment caused by the horizontal loads  resisted  by the span and 
is  given  by M = KsA2 h 

L, is  the developed length  of  the rafter from column top to  column top as 
shown in Figure 2.5 

&,/(Acw -1) is  the second-order magnification factor from  A.4.3. 

Figure A. 10 Horizontal  forces  and  moments  from  horizontal  forces 
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Therefore the additional spread in each span is given by:

Spread = Ssin2 (Sin a1+Sina2)

Where:

a1 is the slope of one rafter in the span

a2 is the slope of the other rafter in the span.

A.5 Axial forces
Some of the axial compression forces differ from the first-order analysis values
because the shape of the frame differs from the undeformed shape. The axial
forces in the deformed structure must be used in the energy summations.

There can be no change in the total axial forces in the columns. However the
drop of the apex will change the axial compression in the rafters. Therefore, in
the absence of a detailed analysis the axial loads at collapse should be taken as:

Columns P2 = P1

Rafters P2 = + P1 b

where:

P2 is the set of axial forces in the members at ULS, including the
second-order effects

P1 is the set of axial forces at ULS in the first-order analysis

Pla is the axial compression force in the rafter at ULS at the hinge nearest
mid-span calculated by first-order analysis. The value at mid-span
may be used

Pib is the additional axial compression force in the rafter such that
Pi = Pla + Pib

A.6 Reserve factor at Ultimate Limit State
The energy released by second-order effects is calculated from the expression
P2çbsdqi, which is defined in A.2.2. This summation is shown in the worked
examples.

The energy absorbed by the plastic mechanism is calculated from the expression
>M4O which is defined in A.2.2. This summation is shown in the worked
examples.

The reserve factor on moment, M, is calculated from the first-order plastic
collapse factor, 2, as follows:

— P2ØsdØ
M

— 1—

MprdO

The load factor of the frame at failure is taken as 2M•
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Therefore the additional spread in each  span is given by: 

Spread = &,,2 (Sin al +Sina2) 

Where: 

al is the slope of one rafter in  the span 

a2 is  the slope of  the other rafter in the span. 

A.5 Axial forces 
Some of  the axial compression forces differ from the first-order analysis values 
because the shape of  the frame differs from the undeformed shape. The axial 
forces in the deformed structure must  be  used  in  the energy  summations. 

There  can be no  change in  the  total axial forces in the columns. However the 
drop of  the apex will change the axial compression in the rafters. Therefore, in 
the absence of a detailed analysis the  axial loads at collapse should  be  taken as: 

Columns P2 = PI 

where: 

P2 is the set of axial forces in  the members at ULS, including  the 
second-order effects 

PI is the set of axial forces at ULS in the first-order analysis 

P,, is the axial compression force in  the rafter at ULS at the  hinge nearest 
mid-span calculated by first-order analysis. The value at mid-span 
may be used 

Plb is the additional axial compression force in the rafter such that 
p1 = PI, + P l b  

A.6 Reserve factor at  Ultimate Limit State 
The  energy released by second-order effects is calculated from the expression 
CP24sd4, which is defined in A.2.2.  This  summation is shown in  the worked 
examples. 

The  energy  absorbed by  the plastic mechanism is calculated from the expression 
CM,,d0 which is defined in A.2.2. This summation is shown  in  the worked 
examples. 

The reserve factor on  moment, AM, is calculated from the first-order plastic 
collapse factor, 4, as follows: 

CM,, dB 

The load factor of the frame at failure is taken as AM. 
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APPENDIX B Second order analysis of
tied portals 'by hand'

B.1 Range of application and design steps
This Appendix shows how second-order analysis may be performed without
second-order software for tied portal frames, designed by plastic design
methods. These portals have ties at or near the rafter level. The method is
only intended for frames in which:

(i) the tie connects either to the column/rafter haunch or directly to the rafter

(ii) no hinges occur below ULS when analysed by first-order analysis

(iii) the tie does not yield below ULS.

It should be recognised that tied portals with low rafter slopes are potentially
susceptible to snap-through of the rafters. The worked example shows a
significant increase in axial force and consequent apex drop for a frame with an
8° slope. It is recommended that slopes less than 6° should not be used without
additional consideration of the stiffnesses of members and components.

Portals in which there is a tie at an internal floor level, but where there is no tie
at or near the rafter level, should be designed using the method for common
portals, given in Appendix A.

It is recommended that the ties in tied portals are designed so that they do not
yield below Ultimate Limit State, because yielding of the tie may cause a major
change in both the geometry of the structure and the structural behaviour. It is
also recommended that this method is not used for frames for which the
deflections from a sway-check exceed h/500, as explained in Section 5.4.3.

Design steps
The design steps are as follows:

1. Identify from the first order analysis:

• the plastic collapse mechanism

• the hinge incremental rotations

• the axial forces in the members

• the load factor at the formation of the first plastic hinge, ? (excluding
hinges at bases where the moment of resistance of the base is less than
the moment of resistance of the columns)

• the plastic collapse factor, ,
• the deflections of the frame at 2.

2. Calculate the second-order deflections of the 'elastic' frame.

(a) Calculate the stiffness reduction factors to allow for P. ô (P-little delta)
effects
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APPENDIX B Second order  analysis of 
tied portals 'by hand' 

B.1 Range of application  and design steps 
This Appendix shows how second-order  analysis may be performed without 
second-order  software  for tied portal  frames, designed by plastic design 
methods.  These  portals have ties  at  or  near the rafter  level.  The method is 
only  intended  for  frames in which: 

(i) the tie connects  either to  the columdrafter haunch or  directly  to the rafter 

(ii)  no  hinges  occur below ULS when analysed by first-order  analysis 

(iii) the tie does  not yield below ULS. 

It  should be recognised that tied portals with low rafter  slopes  are potentially 
susceptible  to  snap-through of the rafters.  The  worked  example  shows  a 
significant  increase in axial force  and  consequent apex drop  for  a  frame with an 
8" slope. It  is recommended that  slopes  less than 6" should not be used without 
additional  consideration of  the stiffnesses of members  and  components. 

Portals in which there is a tie at an internal  floor  level, but where there is no tie 
at or near the rafter  level, should be designed using the method for common 
portals,  given in Appendix A. 

It  is  recommended that the ties in tied portals  are designed so that they do not 
yield below Ultimate Limit State,  because yielding of the tie may cause  a major 
change in both the geometry of  the structure and the structural  behaviour.  It is 
also  recommended that this method is  not used for  frames  for which the 
deflections  from  a sway-check exceed h/500, as explained in Section 5.4.3. 

Design steps 

The  design  steps  are as follows: 

1. Identify from the first  order  analysis: 

0 the plastic collapse mechanism 

0 the hinge incremental  rotations 

the axial forces in the members 

0 the  load factor at  the formation of  the first  plastic  hinge, A I  (excluding 
hinges  at bases where the moment of resistance of  the base is  less than 
the moment of resistance of  the columns) 

the plastic collapse  factor, .2, 
0 the deflections of the frame  at Al .  

2. Calculate the second-order  deflections of  the 'elastic'  frame. 

(a)  Calculate the stiffness  reduction  factors to allow for P.  6 (P-little delta) 
effects 
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(b) Calculate the second-order magnification factors for the 'elastic'
frame.

(c) Calculate the deflections of the 'elastic' frame. These are the values of
the deflections at 2 plus additional deflections calculated to allow for
the second-order effects.

3. Calculate the second-order deflections of the 'plastic' frame.

(a) Calculate the stiffness reduction factors to allow for P. ô (P-little delta)
effects

(b) Calculate the second-order magnification factor of the 'plastic' frame.

(c) Calculate the deflections of the 'plastic' frame from gravity loads.

(d) Calculate the deflections of the 'plastic' frame from horizontal loads.

4. Calculate the apex drop using an iterative method.

5. Calculate the increased axial loads in the rafters to account for second-
order effects.

6. Sum the energies.

7. Calculate the reserve factor, 2M•

8. Check 'M � 1.0

B.2 Basis of method
B.2.1 General
The basis of the method is the same as described in A.2. 1 for common portals,
which are portals without tie at or near the rafter level.

B.2.2 Application of the energy method
The energy calculations are as described in A.2.2 for common portals.

B.2.3 Deflection calculations
The deflection calculations are not identical to the calculations for common
portals in A.2.3. This is because, where the tie in a tied portal is at or near the
rafter level, the rafters and tie act more like a truss than like the rafters in a
common portal. Therefore, the vertical deflection of the apex and the spread of
the column tops is dominated by the axial deformations of the rafters and the tie
instead of the bending deformations of the rafters and the columns.

The deflections governed by bending stiffness are calculated using the same
principles as in A.2.3 for common portals.

The following deflections are governed by bending stiffness:

• sway of the frame, for both 'elastic' and 'plastic' frames

• mid—rafter deflection from sway and transverse loads on the rafter.

The deflection of the apex is calculated from the following components:

• The elastic deflection calculated at ULS from the first-order frame analysis.
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3. 

4. 

5 .  

6. 

7 .  

8 .  

(b) Calculate the second-order magnification factors for the ‘elastic’ 
frame. 

(c) Calculate the deflections of the ‘elastic’ frame. These are the  values  of 
the deflections at A, plus  additional deflections calculated to  allow for 
the second-order effects. 

Calculate the second-order deflections of the ‘plastic’ frame. 

(a) Calculate the stiffness reduction factors to allow for P. 6 (P-little  delta) 
effects 

(b) Calculate the second-order magnification factor of the  ‘plastic’ frame. 

(c) Calculate the deflections of  the  ‘plastic’ frame from gravity loads. 

(d) Calculate the deflections of  the ‘plastic’ frame  from horizontal  loads. 

Calculate the apex drop using an iterative method. 

Calculate the increased axial loads  in  the rafters to account for second- 
order effects. 

Sum the energies. 

Calculate the reserve factor, AM. 
Check AM 2 1.0 

B.2 Basis of method 
B.2.1 General 

The basis of  the method is  the same as described in A.2.1 for common portals, 
which are portals without tie at or near the rafter level. 

B.2.2 Application  of  the  energy  method 

The energy calculations are as described in A.2.2 for common portals. 

B.2.3 Deflection  calculations 

The deflection calculations are not  identical to the calculations for common 
portals in A.2.3. This is because, where the tie  in a tied portal is at or near  the 
rafter level, the rafters and tie act  more like a truss than  like  the rafters in a 
common portal. Therefore, the vertical deflection of the apex and the spread of 
the column tops is dominated by the axial deformations of  the rafters and  the  tie 
instead of the  bending deformations of  the rafters and the columns. 

The deflections governed by bending stiffness are calculated using  the  same 
principles as in A.2.3 for  common portals. 

The following deflections are governed by bending stiffness: 

sway of  the frame,  for both ‘elastic’ and ‘plastic’ frames 

mid-rafter deflection from sway and transverse loads on the rafter. 

The deflection of  the apex is calculated from the following components: 

The elastic deflection calculated at ULS from the first-order frame analysis. 
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• A drop from curvature shortening of the rafters.

• Further deflection arising from the increase in axial force in the rafters to
maintain the same vertical component of force as in first-order analysis
because the rafter slope has decreased due to the drop of the apex.

B.2.4 Base stiffness
The base stiffness may be taken as in A.2.4.

B.3 Bending deflections of the 'elastic' frame
B.3.1 General
The methods are the same as described in A.3 except for the differences noted
below. Only the differences from A.3 are given below, to clarify the
comparison of the methods for common and tied portals.

B.3.2 Reduction factor to allow for P.8 (P—little delta) effects
For rafters of tied portals with ties that have not yielded at ULS, the method is
similar to the method in A.3.2 but the calculation of Per differs from A.3.2.
The length L is taken as the length along the slope from apex to eaves/valley.
The axial forces in the rafter should be taken as the forces occurring in the
length resisting the tie force because these are the highest forces occurring
within the length of the rafter.

For columns of tied portals, the method is identical to that in A.3.2.

B.3.3 Second-order magnification factors, ?crI(Acr—1)
The methods are the same as in A.3.3, except that in the calculation of ô, the
rafter span is taken as the length from apex to eaves/column.

B.3.4 Calculation of deflections
The principles are as in A.3.4. However, the second-order vertical deflections
are governed by truss action, which is calculated according to B.5. Therefore,
only the sway deflections are magnified by Acr/(2cr1).

The second-order deflections on the elastic frame, excluding the deflections
within the truss system, are calculated as follows:

ox2 = (OX1 — OX1) + OX1 {'lcri/(Acri 1)}

are calculated for the truss system as in B.5.

B.4 Bending deflections of the 'plastic' frame
B.4.1 General
To simplify the calculations, this method assumes that all the spans develop
plastic hinges at one end at the load factor 2 at which the first hinge forms in
the frame. Then the analysis model becomes an elastic frame with a hinge at
(or near) the end of each rafter as shown in Figure B. 1. The pins are used at
the plastic hinges because at a pure plastic hinge there is no increase of bending
moment.
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A drop  from  curvature  shortening of  the rafters. 

0 Further  deflection  arising  from the increase in axial force in the rafters  to 
maintain the same vertical  component of force as in first-order  analysis 
because the rafter slope has decreased due to  the drop of  the apex. 

B.2.4  Base  stiffness 

The base stiffness may be taken  as in A.2.4. 

B.3 Bending deflections of the 'elastic'  frame 
B.3. l General 

The methods are the same  as  described in A.3 except  for the differences noted 
below. Only the differences  from A.3 are given below,  to  clarify the 
comparison of the methods  for common and tied portals. 

B.3.2  Reduction  factor  to  allow  for  P.6  (P-little  delta)  effects 

For  rafters of tied portals  with ties that have not yielded at ULS, the method is 
similar  to the method in A.3.2 but the calculation of Pcr differs  from A.3.2. 
The length L is taken as the length along the slope from  apex  to  eaves/valley. 
The axial forces in  the rafter should be taken as the forces  occurring in  the 
length  resisting the tie force  because these are the highest  forces  occurring 
within the length of  the rafter. 

For columns of tied portals, the method is identical to that in A.3.2. 

8.3.3 Second-order  magnification  factors, kCr/(Acr -1  1 
The methods are the same as in A.3.3, except that in the calculation of S,, the 
rafter span is taken as the length from apex to  eavedcolumn. 

B.3.4 Calculation  of  deflections 

The  principles  are  as in A.3.4. However, the second-order  vertical  deflections 
are  governed by truss  action, which is  calculated  according  to B.5. Therefore, 
only the  sway deflections are magnified by &/(Acr -1). 

The  second-order  deflections  on the elastic  frame,  excluding the deflections 
within the truss  system,  are  calculated  as  follows: 

SX, = (6x1 - m,,> + 8x1s {JcrI/(Ax1 - 1)) 

SY2 are  calculated  for the truss  system  as in B.5. 

B.4 Bending deflections of the  'plastic'  frame 
B.4.1  General 

To simplify the calculations,  this method assumes that all  the spans develop 
plastic hinges at one end  at the load factor AI at which the first hinge forms in 
the frame.  Then the analysis model becomes an  elastic  frame with a hinge at 
(or  near) the end of each rafter  as shown in Figure B. 1. The  pins  are used at 
the plastic hinges because at  a  pure  plastic hinge there  is no increase of bending 
moment. 
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This mode of deflection is a sway mode even for gravity loads, so all the
second-order deflections are calculated from the magnification arising from the
sway mode of buckling. Therefore, the second-order deflections are given by:

ô = ô1 {2cr/(Acr 1)}

B.4.2 Reduction factor to allow for P.o (P—little delta) effects
The second-order effects within the member lengths reduce the effective
stiffness of the members. This effect must be included in the analysis. This is
done by calculating an effective inertia value for the members, Jeff, as for the
'elastic' frame in Section B.3.2 above.

B.4.3 Second-order magnification factor, ?.crpI(?crp 1)
The principles that apply are as in A.4.3, except that in the calculation of ô,,
the rafter span is taken as the length from apex to eaves/column.

B.4.4 Calculation of deflections
The loads applied to the 'plastic frame' must be the difference between the
collapse loads, A x (ULS loads), and the loads resisted by the 'elastic frame'.
Therefore the loads to be applied to the 'plastic frame' are (A — i) x
(ULS loads). Typical deflections are shown in Figure B. 1, which shows that
the frame sways under gravity loading plus notional horizontal forces. This
sway is partly due to the direct effect of the notional horizontal forces and
partly because the notional horizontal forces cause the hinge to appear on one
side only, creating an asymmetric frame and an asymmetric response.

In the absence of a more detailed analysis, the hinges in the 'plastic frame'
model should be assumed to be asymmetric, as in Figure B.2, to avoid
unconservative deflections at collapse load.

B.4.5 The 'plastic frame' resisting vertical loads
The deflections from 2 to 2 are calculated by simple beam theory based on
simply supported beams because the plastic hinges mean that there can be no
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Figure B.1 Typical deflection of a 'plastic frame'

-

Figure B.2 Typical design hinge pattern for a 'plastic frame'

This mode of  deflection  is a sway mode even for gravity loads, so all  the 
second-order deflections are calculated from the  magnification arising from the 
sway mode of buckling. Therefore, the second-order deflections are given by: 

B.4.2 Reduction  factor  to  allow  for P.S (P-little  delta)  effects 

The second-order effects within the member lengths  reduce  the effective 
stiffness of  the members. This effect must be  included in the analysis. This  is 
done by calculating an effective inertia value for the members, l e g ,  as for the 
‘elastic’ frame in Section B.3.2 above. 

B.4.3 Second-order  magnification  factor, Lrp/ (A,crp - 1 ) 
The principles that  apply are  as in A.4.3,  except that in  the calculation of dnPr 
the rafter span is taken as the length from  apex to eaves/column. 

B.4.4 Calculation  of  deflections 

The loads applied to the ‘plastic frame’ must be  the difference between the 
collapse loads, /$, x (ULS loads), and the loads resisted  by  the  ‘elastic frame’. 
Therefore the  loads  to  be applied to  the ‘plastic frame’  are (4 - AI)  x 
(ULS loads). Typical deflections are shown in Figure B. 1, which shows that 
the frame  sways under gravity loading plus notional horizontal forces. This 
sway is partly due to the direct  effect of the notional horizontal forces and 
partly because the  notional horizontal forces cause the  hinge  to appear on one 
side only, creating an asymmetric frame  and  an asymmetric response. 

Figure B . l  Typical  deflection  of a  ‘plastic frame‘ 

In  the absence of a more detailed analysis, the hinges in the ‘plastic frame’ 
model should be  assumed  to  be asymmetric,  as in Figure B.2, to  avoid 
unconservative deflections at collapse load. 

Figure B.2 Typical design hinge  pattern  for  a  ‘plastic frame‘ 

B.4.5 The ’plastic  frame’  resisting  vertical  loads 

The deflections from AI to .tp are calculated by simple beam theory based on 
simply supported beams  because  the plastic hinges mean that  there can be  no 
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increase in end moments of the rafters. To simplify the calculations, this 'hand'
method assumes that all rafters will behave as simply supported beams from
load factor 2.

The horizontal deflections due to gravity load results from the end rotation of
the rafters of one of the spans. Where the analysis model is a series of
individual spans instead of the entire frame, the greatest end rotation should be
used.

The load on the span at ULS is WULS and the load applied to the span on the
elastic frame is WE. Therefore, the load to be applied to the 'plastic frame'
Wp = 2p WULS - WE.

The column top displacement for the external column/rafter that remains elastic
is governed by the rafter end. The rafter end rotation is approximately the
same as for a simply supported beam of the same developed length, S, as shown
in Figure B.3.

T.T.TTTT.

4
Figure B.3 Column top displacement

The second-order rafter end slope is given by:

= ws3
24EI 2crp —1

giving a sway deflection of the column top = h8.

The transverse deflection of the rafter at mid-rafter (where there is a plastic
hinge) is given by:

8R2 = 5wS4 2
384EIR 'crp —1

where:

S is the rafter length from apex to eaves/valley

Wp is the load on the span of the 'plastic frame'

WULS is the Ultimate Limit State load on the span
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increase in end moments of the rafters. To simplify the calculations,  this ‘hand’ 
method assumes that all rafters will behave as simply supported beams from 
load factor A,. 

The  horizontal  deflections  due  to  gravity  load results from the end rotation of 
the rafters of one of  the spans.  Where the analysis model is  a  series of 
individual  spans  instead of  the entire  frame, the greatest  end  rotation should be 
used. 

The  load  on the span  at ULS is +vuLs and the load applied  to the span on the 
elastic  frame  is +vE. Therefore, the load  to be applied to the ‘plastic frame’ 
WP /lp WULS - WE. 

The  column  top  displacement  for the external  column/rafter  that  remains elastic 
is governed by the rafter  end.  The  rafter  end  rotation  is  approximately the 
same  as  for  a simply supported beam of the same developed  length, S, as shown 
in Figure B.3. 

Figure B.3 Column  top  displacement 

The  second-order  rafter  end  slope  is given by: 

giving  a sway deflection of  the column top = h&. 

The  transverse  deflection of the rafter  at  mid-rafter  (where  there  is  a plastic 
hinge)  is given by: 

where: 

S is the rafter  length  from apex to eaveshalley 

wp is the load on the span of  the ‘plastic frame’ 

wuLs is the Ultimate Limit State load on the span 
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WE is the load applied to the 'elastic frame'

X1, is the plastic collapse factor

'R is the gross value of the major axis inertia of the rafter

E is Young's modulus

2/(A-l) is the deflection magnification factor from B.4.3.

Note that w, WULS and w1 here denote the component of load acting transverse
to the rafter measured as a distributed load along the developed length of the
rafter.

For vertical loads measured on plan, Wv plan, the component transverse to the
rafter is given by:

W = Wv plan Cos2a

For vertical loads measured along the slope, Wv slope , the component transverse
to the rafter is given by:

W = Wv slope Cosa

where:

w is the set of loads w, WuLs or w1

a is the slope of the rafter.

B.4.6 The 'plastic frame' resisting horizontal loads
The sway deflections due to the notional horizontal forces or externally applied
horizontal loads are calculated assuming the reduced stiffness of the frame
following the formation of plastic hinges as shown in Figure B.4. The formulae
are derived in Appendix C.

Figure B.4 Sway deflection model

The second-order sway stiffness of each bay is given by:

— — 1
><

1

8s2 2crp

3EIR 3EI —1

where:

K, is the sway stiffness of the span including second-order effects

8s2 is the sway deflection of the top of the column which does not have a
hinge in it or in the adjacent length of rafter, including second-order
effects
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is the load applied to the ‘elastic frame’ 

h, is the plastic collapse factor 

ZR is  the gross value  of  the major axis inertia of  the rafter 

E is Young’s modulus 

&,/(&,-l) is  the deflection magnification factor from B.4.3.  

Note that W,, wuLs and w1 here denote the component of  load acting transverse 
to the rafter measured as a distributed load along the  developed  length  of  the 
rafter. 

For vertical loads measured on plan, w , , , ~ ~ ~ ,  the component transverse to  the 
rafter is given  by: 

W =  W ,  plan Cos2a 

For vertical loads measured along the slope, wVslope , the component transverse 
to the rafter is given  by: 

W = W ,  slope Cosa 

where: 

W is the  set  of  loads W,, wuLs or  wI 

a is the  slope  of  the rafter. 

6.4.6 The  ‘plastic  frame‘  resisting  horizontal  loads 
The sway deflections due to the notional horizontal forces or externally applied 
horizontal loads are calculated assuming the  reduced  stiffness  of  the frame 
following the formation of plastic hinges as shown in Figure B.4 .  The formulae 
are derived in Appendix C. 

Figure B.4 Sway deflection  model 

The second-order sway stiffness of each bay is given by: 

1 1 1 

where: 

K,  is  the sway stiffness of  the span including second-order effects 

S,: is  the  sway deflection of the top of  the column which does not have a 
hinge in  it or in the adjacent length of rafter, including second-order 
effects 
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S is taken as the length of the rafter from apex to eaves/valley

h is the height of the column from the base to the neutral axis of the
rafter

'R and I are the nominal values of the inertias of the rafter and the column

is the second-order magnification factor from B.4.3.

The second-order least sway deflection of the top of the column in a frame may
be taken as:

(2 —21)Hp

where:

>H is the sum of the equivalent horizontal loads H resisted by the frame.
At each column, H is given by H = Y(H)i1)/h, as shown in Figure
B.5.

>KS is the sum of the sway stiffnesses, allowing for second-order effects of
all the spans in the frame.

The sagging deflection of the rafter at mid-length between the apex and the
eaves/valley, caused by horizontal loads, is given by

Ssm2

where:

= zis2 2crl

l€EIR (2cri1)

S is the length along the rafter slope from apex to eaves/valley

'R is the gross I value of the rafter

M is the moment caused by the horizontal loads resisted by the span and
is given by M = Kz12h.

h2
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Figure B.5 Horizontal forces and moments from horizontal forces

S is  taken as the length of  the rafter  from  apex to eaveshalley 

h is the height of the column  from the base to the neutral  axis of the 
rafter 

IR and I ,  are the nominal  values of  the inertias of the rafter  and the column 

3Lcw/(hc,-l) is the second-order  magnification  factor  from B.4.3.  

The  second-order  least sway deflection of the top of the column in a  frame may 
be taken as: 

where: 

CH is the sum of  the equivalent  horizontal  loads H resisted by the frame. 
At each  column, H is given by H = C(Hihi)/h, as shown in Figure 
B.5. 

CK, is the sum of  the sway stiffnesses,  allowing  for  second-order  effects of 
all the spans in the frame. 

The  sagging  deflection of  the rafter  at mid-length between the apex and the 
eaves/valley,  caused by horizontal  loads,  is  given by 

~s~ ' c r l  
6 s m 2  - ~ 

- 

16'1, ( ' c r1 -1 )  

where: 

S is the length along the rafter slope from  apex  to  eaves/valley 

IR is the gross I,  value of  the rafter 

M is the moment caused by  the horizontal  loads  resisted by the span and 
is given by M = K,Azh. 

Figure B.5 Horizontal  forces  and  moments from horizontal  forces 
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B.5 Deflections of the rafters/tie 'truss' system
B.5.1 General
The apex deflection is calculated from

(i) First-order elastic deflections of the frame at ULS.

(ii) Apex drop from rafter curvature.

(iii) Increased rafter forces so that the vertical component of the rafter force at
the apex remains equal to the first-order values despite the reduced slope of
the rafters due to apex drop.

Step (iii) may require iteration until the solution is acceptably close to
equilibrium. This is measured in terms of increase of the drop of the apex.
The solution may be taken as acceptable when the increase in apex drop, from
one iteration, is less than 3% of the total apex drop calculated before the
iteration.

B.5.2 Apex drop from first-order elastic deflections
The apex drop at ULS from first-order behaviour may be calculated from

&LS =

where:

2 is the load factor at the formation of the first hinge

5 is the apex drop at 2 calculated from the first-order behaviour.

B.5.3 Apex drop from curvature shortening
It is unusual to consider the shortening of the end to end length of members
caused by curvature. However, where tied portals have low roof slopes, for
example around 8° or lower, the apex drop is very sensitive to member
shortening. Tied portals tend to have slender rafters, so curvature shortening
should be considered. The shortening is calculated from the deflection of the
length of the rafter between the 'sharp' end of the column/rafter haunch and the
apex of the roof, Sr, shown in Figure B.6.
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Figure B.6 Length of rafter in curvature shortening calculations

B.5 Deflections of the  rafterdtie 'truss' system 
B.5.1 General 

The  apex deflection is  calculated from 

(i) First-order elastic deflections of the frame  at ULS. 

(ii) Apex drop from rafter curvature. 

(iii) Increased rafter forces so that the vertical component of  the rafter force at 
the apex remains equal to  the first-order values despite  the reduced slope of 
the rafters  due  to apex drop. 

Step  (iii) may require iteration until  the  solution  is  acceptably close to 
equilibrium.  This  is measured in terms of increase of  the drop of  the apex. 
The solution may  be  taken as acceptable when the increase in apex drop, from 
one iteration, is  less  than 3% of  the  total apex drop calculated before the 
iteration. 

B.5.2 Apex drop from  first-order  elastic  deflections 

The  apex  drop at ULS from first-order behaviour may  be  calculated from 

where: 

AI is  the  load factor at the formation of  the first hinge 

SI is the apex drop  at 1, calculated from the first-order behaviour. 

B.5.3 Apex  drop  from  curvature  shortening 

It is unusual to consider the shortening of the end  to end length  of members 
caused by curvature.  However, where tied portals have low roof slopes, for 
example  around 8" or lower, the apex  drop is very sensitive  to member 
shortening. Tied portals tend to have slender rafters, so curvature shortening 
should be considered. The shortening is calculated from the  deflection of the 
length of  the rafter between  the 'sharp'  end of  the column/rafter haunch and the 
apex of the roof, S,, shown in Figure B.6. 

Figure B.6  Length of rafter  in  curvature  shortening  calculations 
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The deflection within S. is calculated assuming that the bending moment
diagram is as shown in Figure B.7. The hogging moments at the ends of the
length S are equal to the sagging moment at mid-length due to plastic
redistribution of moment, so that

MR

where:

= WULSSr2

16

WULS is the transverse load along the rafter at ULS.

Figure B.7 Bending moment diagram for curvature shortening
calculations

2
2 WULSSThe second-order transverse deflection, 8cs2 — _________

384 EIeffR

where:

'eff.R is calculated according to B.3.2.

2/ \27tS2)The shortening is then approximated as zl = CS

4Sr

The apex drop from shortening is calculated as shown in Figure B.8 from:

Apex drop
A

Sina

IA

Figure B.8 Apex drop from rafter shortening
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A

The  deflection within S, is  calculated assuming that the bending moment 
diagram is as shown in  Figure B.7. The hogging moments at the ends of  the 
length S, are  equal  to the sagging moment at mid-length due to plastic 
redistribution of moment, so that 

2 
W ULS Sr M, = 

16 

where: 

wuLs is the transverse load along the rafter  at ULS. 

Figure B.7  Bending moment diagram for  curvature  shortening 
calculations 

2 

The  second-order  transverse  deflection, 8cs2 - - 2 W U L S S r  

384 EIeff.R 

where: 

Zeff,.R is  calculated  according  to B. 3.2. 

n 2  l 2  The  shortening  is then approximated  as A = 
4Sr 

The apex drop  from  shortening  is  calculated  as shown in Figure B.8 from: 

A Apex drop = - 
Sina 

A /sin a 

I 

Figure B.8 Apex  drop  from  rafter  shortening 
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B.5.4 Apex drop from increased rafter axial force
The apex drop reduces the slope of the rafters, so the force must increase to
provide the same vertical component of rafter force. The increase in axial force
causes additional apex drop, which is calculated by an iterative process as
follows:

(i) Calculate the vertical component of the rafter axial force at the apex
according to first-order analysis.

V1 = PR Sina1

(ii) Calculate the reduced slope of the rafter from first order deflections from
Section B.5.2 and from curvature shortening from Section B.5.3. The
deflection is:

d1=61+
Sina1

The unstressed rise of the rafter above the hinge at the bottom of the rafter,
= Sr Sina, as shown in Figure B.9.

Reduced rise, h2 = — d1

11Reduced slope, a2 = Sin

(iii) Calculate the reduced vertical component of the rafter

V2 = PRI Sina2.

(iv) Calculate the required increase in rafter axial force:

V2 - V1SPR = _____
Sina2

(v) Calculate the resultant increase in horizontal reaction at the column top:

= öPR Cosa2.

(vi) Calculate the resulting increase in tie force:

(c+hT=
I

hT

where, e and hT are defined in Figure B.9 and c is defined in Figure B. 10

(vii) Calculate the horizontal movement of the hinge Z due to tie stretching:

67' x halfspan
Lateral displacement of tie end, T =

ATE

where AT is the cross-sectional area of the tie

e+hTLateral displacement of Z, ZT = ______

hT
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B.5.4 Apex drop from  increased  rafter  axial  force 

The  apex  drop reduces the slope of the rafters, so the force must increase to 
provide the same vertical component of rafter  force.  The increase in axial force 
causes additional apex drop, which is calculated by  an iterative process as 
follows: 

(i)  Calculate the vertical  component of  the rafter axial force  at the apex 
according  to  first-order  analysis. 

:. VI = P R ,  Sin a' 

(ii) Calculate the reduced slope of the rafter from  first  order deflections from 
Section B.5.2 and  from  curvature shortening from Section B.5 .3 .  The 
deflection  is: 

A 

Sina, 
dl = 61 + __ 

The  unstressed  rise of the rafter  above the hinge at the  bottom of  the rafter, 
h l  = S, Sina,  as shown in Figure B.9. 

:. Reduced rise,  h2 = hl - dl 

:. Reduced slope, a2 = Sin-' (T) h1 - dl 

(iii) Calculate the reduced vertical  component of the rafter 

V, = P R '  Sina2. 

(iv) Calculate the required increase in rafter axial force: 

@R = v2 -v' 
Sina 

(v)  Calculate the resultant  increase in horizontal reaction at the column top: 

= 6PR Cosa2. 

(vi)  Calculate the resulting increase in tie force: 

where, e and hT are defined in Figure B.9 and c is defined in Figure B. 10 

(vii) Calculate the horizontal movement of the hinge Z due to tie stretching: 

ST x halfspan 
Lateral displacement  of tie end, a, = 

A T E  

where AT is the cross-sectional  area of  the  tie 

Lateral displacement of 2, 2XzT = a, [ 7 1 
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cI;
level

Figure B. 10 Effective cantilever above tie

(viii) Calculate the horizontal movement of hinge Z due to column bending:

216Hc hT +C
oxzc —

3EIeff C

where 'effc is calculated according to B.3.2.

(ix) Calculate the rafter shortening from increased axial strain

SPRSSr = r

ARE

where AR is the cross-sectional area of the rafter.

(x) Calculate the increased rafter drop from increased rafter axial as Figure
B.11.

SX. SS
dA = z + r

Tana2 Sina2
where Kz = ZT + ZC
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Figure B.9 Tied portal geometryFigure 6.9 Tied portal geometry 

Figure B. 10 Effective cantilever  above tie 

(viiij  Calculate the horizontal movement of hinge 2 due to column bending: 

where Zeffc is  calculated  according to B.3.2. 

(ixj Calculate the rafter  shortening  from  increased axial strain 

where AR is the cross-sectional  area of the rafter. 
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a

Figure B.1 1 Apex drop from increased rafter axial force

(xi) Re-calculate the rafter slope. The definition is now given by:

d2=+
Sina2

-! h1 —d2Revised slope a2 = Sin
Sr

(xii) Calculate d2/d1

If d2/d1 � 1.03, take a = a2 and PR = PR! + 5PR.

If d21d1 > 1.03, repeat steps (iii) to (xi).

If (revised d2)/(previous d2) � 1.03, take a = a2 and PR = PRI + SPR;
otherwise, repeat again.

B.6 Axial forces
The energy calculation uses the axial forces at ULS including the second-order
effects.

The axial forces in the columns may be taken as the values from first-order
analysis because the total of the axial forces must remain the same to preserve
vertical equilibrium whatever analysis is used.

The axial forces in the rafters are greater than calculated by first-order analysis.
The axial force increases as the slope decreases so that the vertical component
of the force remains the same as from the first-order analysis.

Therefore, the forces used in the energy calculation may be calculated as
follows:

Columns P2 =

Rafter P2 = '! +
Where:

P2 is the axial force used in the energy calculation

P2 is the axial force at ULS in the first-order analysis

a! is the slope of the rafter in the unstressed condition
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Figure B . l l  Apex  drop from increased rafter  axial  force 

(xi)  Re-calculate  the rafter slope. The definition is  now given by: 

A 

Sina 
d2 = 61 + ~ + d.4 

(xii) Calculate d2/dl 

If d2/dl 5 1.03, take a = a2 and PR = PRI + ~ P R .  

If d2/dl > 1.03, repeat steps (iii)  to  (xi). 

If (revised d2)/(previous d2) 5 1.03, take a = a2 and PR = PRI + ~ P R ;  
otherwise, repeat again. 

B.6 Axial forces 
The  energy calculation uses the axial forces  at ULS including the second-order 
effects. 

The axial forces in the columns may  be  taken as the values from first-order 
analysis because  the  total  of  the axial forces must remain the  same to preserve 
vertical equilibrium whatever analysis is used. 

The axial forces in the rafters are greater than calculated by first-order analysis. 
The axial force increases as the slope decreases so that the  vertical  component 
of the force remains the same as from the first-order analysis. 

Therefore, the forces used  in  the energy calculation may be calculated as 
follows: 

Columns P2 = PI 

Rafter P ,  = P ,  + 6 P ,  

Where: 

P2 is the axial force used in  the energy calculation 

P2 is the axial force at ULS in  the first-order analysis 

a1 is the slope of  the rafter in the unstressed condition 
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a2 is the slope of the rafter allowing for second-order effects.

B.7 Reserve factor at Ultimate Limit State
The reserve factor on moments, A'M, is calculated from the first order collapse
factor, 2, as follows:

— EP2Øsdb
M — 1—

IMprdG

The summations are shown in the worked examples.

The load factor of the frame at failure is taken as ,tM.
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a2 is the slope of  the rafter allowing for second-order effects. 

B.7 Reserve factor at Ultimate Limit State 
The reserve factor on  moments, AM, is calculated from the first order collapse 
factor, 4, as follows: 

The  summations  are  shown in  the worked examples. 

The 1Qad factor of  the frame at failure is taken as AM. 
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APPENDIX C Effective stiffness of
members

The horizontal thrust on a span of a common portal (i.e. not a tied portal) is
limited if a plastic hinge develops at one end of the span, either at the column
top or in the rafter. For a column with a pinned base, the horizontal thrust, H,
is limited to:

MrH = —--
h

where:

Mpr is the plastic moment of the hinge

h is the height of the hinge above the base.

A simple closed solution for the effective stiffness of a uniform rafter is possible
if the geometry of the rafters is idealised as a half sine-curve and the loading is
idealised as a varying distributed load of a half sine-curve intensity as shown in
Figure C. 1. The deflections from a sinusoidal load on a uniform member are
sinusoidal, allowing a simple solution.

For in increment of loading above the load that forms the first hinge, the
deflection of the roof is entirely determined by the bending deflection. This is
because the horizontal thrust cannot increase above the limiting value

determined by the plastic hinge. For a load increment wSin -, the deflected
L

form calculated by first-order analysis is given by:

y = aSin1 = = = SJ_-1-JSJ(loading)d

(1 . lv;
=J$- — SJwSin—EI) L

wL4 iv;
= Sin—

4EI L

lv;
wSrn—=EIa——Sin—-

L L4 L

Considering the effects of deflection, the vertical reaction from the horizontal
thrust decreases if the roof member deflects downwards, reducing the rise of the
arch-shaped member. This loss of vertical reaction must be compensated for by
increased reaction from bending to maintain vertical equilibrium.
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APPENDIX C 

The horizontal thrust on  a 

Effective stiffness  of 
members 

span of a  common portal (i.e. not a tied portal) is 
limited if a plastic hinge develops at one end of the span, either at the column 
top or in  the rafter.  For  a  column with a  pinned base, the horizontal thrust, H ,  
is limited to: 

h 

where: 

Mpr is the plastic moment of  the  hinge 

h is the height of the hinge above the base. 

A simple closed solution for the effective stiffness of a  uniform rafter is possible 
if  the geometry of  the rafters is idealised as  a half sine-curve and  the loading is 
idealised as a varying distributed load of a half sine-curve intensity as shown in 
Figure C. 1. The deflections from  a sinusoidal load on  a  uniform  member  are 
sinusoidal, allowing a simple solution. 

For in increment of loading above the load that forms the first hinge, the 
deflection of  the roof is entirely determined by  the  bending deflection. This is 
because the horizontal thrust cannot increase above the limiting value 

determined by the plastic hinge. For  a load increment wSin - , the deflected 
m 
L 

form calculated by first-order analysis is given by: 

wL4 7CX 

n 4 ~ ~  L 
- - Sin - 

7CX 7C 7Cx 
:. wSin - = EIa - Sin - 

L L4 L 

Considering the effects of deflection, the vertical reaction from  the horizontal 
thrust decreases if the  roof member deflects downwards, reducing  the rise of the 
arch-shaped member. This loss of vertical reaction must be compensated for by 
increased reaction from bending  to maintain vertical equilibrium. 
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mx
Taking the undeflected shape of the roof member as A Sin — and the actual

L
mx

deflection as I, Sin—, then the loss of vertical reaction from H is:
L

2 2
dy1 dy2WH = H —H

=

2
mx

Hb—Sin——
L2 L

The vertical reaction from bending is:

d2M d2 d2y
w8 =— —El————2 2

for a uniform member

WB = _EI__IbSini')=_EIb—Sini
L) L4 L

For vertical equilibrium

W + WH + WB = 0

W -WB-WH
4 2

• mx it mx it • mx
wSm—=EIb-—Sin———Hb——Sm—

L L4 L L2 L

4• mx m • mxBut wSin— = Ela—Sin——
L L4 L

4 2 4
m mx 'it • mx m mxElb—Sm——Hb—Sin-——=EIa——Sin-—
L4 L L2 L L4 L

2 2

bEI-----bH=aEI---
L2 L2

Writing El --- = 'icr

Then bPcr - bH = aPe,

b(Pcr - H) = aP
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Taking the undeflected shape of the roof member as A Sin- and  the  actual 
7tX 

L 

deflection  as  b Sin-, then the loss of vertical reaction from H is: 
XX 

L 

7cL 
= HA-Sin- - H ( A  - b)-Sin- m ?KL m 

L2 L L2 L 

2 x m 
= Hb-Sin- 

L2 L 

The vertical reaction from bending is: 

:. for  a  uniform  member 

d 4  4 

WB = - El-( .Sin:) = -Elb-Sin- 7t m 
d x 4  L4 L 

m 7c m 7t m 4 2 

:. wSin- = Elb-Sin- - Hb-Sin- 
L L4 L L2 L 

4 m 7t m But wSin- = EZa-Sin- 
L L4 L 

4 
7t m 7c2 m 7t m 
L4 L L2 L L4 L 

4 

:. Elb-Sin- - Hb-Sin- = Ela-Sin- 

2 
7t 

2 

:. bEI - bH = aEI 7t 
L'  L' 

15 
2 

Writing EI - = PCr 
L2 

Then bp,, - bH = aP,, 

. .  bPcr - H> = aPcr 
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'icra
cr -H

The axial thrust P in the rafter is
conservatively

1b=a
1----

cr

1

cr

always greater than the horizontal thrust H, so

Thus the deflection including second-order effects is greater than the deflection
from first order calculations by the factor 1/(1 — P/P). Therefore, the
second-order effects may be included by using an effective rafter stiffness
'eff.R = X (1 — P/Pcr).

_______ w sin Iitx/L
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y Asintx/L

Figure C. 1 Idealised rafter after formation of the first hinge in the
span

. .  b =  1 
a 

The axial thrust P in  the rafter is always greater than  the horizontal thrust H ,  so 
conservatively 

1 b = a- 
1-- P 

Thus the deflection including second-order effects is greater than the  deflection 
from first order calculations by the factor 1/(1 - P/P,,). Therefore, the 
second-order effects may  be included by  using an effective rafter stiffness 
ZeffR = ZR x (1 - P/P,,). 

I l 

A q 7 = - % ?  

y = A'sin nx/L 

-H 

I I 

Figure C . l  Idealised rafter  after  formation  of  the  first hinge in  the 
span 
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APPENDIX D Deflections from horizontal

D. 1 General

loads for 'hand'
second-order calculations

This Appendix describes 'hand' methods of calculating the sway deflections
arising from horizontal loads for frames. These methods are intended for use in
Appendix A and Appendix B.

Methods are given for 'elastic' frames in D.2 and for 'plastic' frames in D.3.

An alternative and more accurate method of calculating the deflections would be
to use software to analyse the frame. For 'plastic' frames, this can be done by
inserting pins at the positions of all the plastic hinges assumed in the method
described in this Appendix.

D.2 'Elastic' frame sway deflection
D.2.1 General
This Section describes methods of calculating notional sway deflections for the
frame when it is entirely elastic.

D.2.2 Simplifying assumptions
The majority of multi-span portal frames have slender internal columns. When
a horizontal load is applied to these frames, there is only a small bending
moment induced in these slender internal columns, because the external columns
are much stiffer. A typical bending moment diagram is shown in Figure D.1.

Figure 0.1

This can be considered as two sub-frames, each comprising an external column
and a rafter pair, as shown in Figure D.2. For multi-span frames in general,
the two external sub-frames provide the majority of the stiffness, so the same
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H

Bending moments in a typical two-span frame under
horizontal loading

APPENDIX D Deflections  from horizontal 
loads for ‘hand‘ 
second-order calculations 

D. l General 
This  Appendix describes ‘hand’ methods of calculating the  sway deflections 
arising from horizontal loads for frames,  These  methods are intended for use  in 
Appendix  A  and  Appendix B. 

Methods  are given for ‘elastic’ frames in D.2 and for ‘plastic’ frames in D.3. 

An alternative and  more accurate method of calculating the deflections would  be 
to use software to analyse the frame. For ‘plastic’ frames, this can be done by 
inserting pins at the positions of all the plastic hinges assumed in the  method 
described in this Appendix. 

D.2 ’Elastic’ frame sway deflection 
D.2.1 General 

This Section describes methods of calculating notional sway deflections for the 
frame  when it is entirely elastic. 

D.2.2 Simplifying  assumptions 

The majority of multi-span portal frames have slender internal columns. When 
a horizontal load is applied to  these frames, there is only a small bending 
moment  induced in these slender internal columns,  because the external columns 
are much stiffer. A typical  bending moment  diagram is shown in Figure D . l .  

Figure D . l  Bending moments in a  typical  two-span  frame under 
horizontal  loading 

This  can  be considered as  two sub-frames, each  comprising  an external column 
and a rafter pair,  as shown in Figure D.2.  For multi-span frames in general, 
the two external sub-frames provide the majority of the stiffness, so the  same 
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model of a pair of sub-frames could be used for hand calculations. Where the
stiffness of the internal columns is to be included, it is preferable to use
software for the analysis of the entire frame.

Where the internal columns provide significant stiffness, it is uneconomic to
ignore them and a detailed analysis of the entire frame by software would be
preferable to the simple methods given here.

Single-span portals and tied portals are better modelled with the rafter length
taken as eaves to mid-span, as shown in Figure D.3.

Given the above assumptions, the calculation of the sway deflections caused by
horizontal loads becomes a reasonable task.

D.2.3 Method for first-order sway deflections
The frame is considered to be a pair of sub-frames as shown in Figure D.2 for
multi-span frames or Figure D.3 for single-span frames. A typical sub-frame is
shown in Figure D.4.

When a horizontal force H is applied to the structure in Figure D.4, the
resulting bending moment diagram is a shown in Figure D.5. The bending
moment diagram has been drawn on the compression side for clarity.
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Figure D.2 Sub-frames for a typical two-span frame

Figure D.3 Sub-frames for a typical single-span frame.
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model of a pair of sub-frames could be  used  for  hand calculations. Where the 
stiffness of  the internal columns is to be included, it is preferable to  use 
software for the analysis of the entire frame. 

0 0 

Figure D.2 Sub-frames  for a typical  two-span  frame 

Where the internal columns provide significant stiffness, it is  uneconomic to 
ignore them  and a detailed analysis of the entire frame by software would  be 
preferable to  the simple methods given here. 

Single-span portals and tied portals are better modelled  with  the rafter length 
taken as eaves to mid-span, as  shown in Figure  D.3. 

Figure D.3 Sub-frames for a typical single-span frame. 

Given the above assumptions, the calculation of  the  sway deflections caused by 
horizontal loads becomes  a reasonable task. 

D.2.3 Method for  first-order sway deflections 

The  frame is considered to  be a pair of sub-frames as shown in Figure D.2 for 
multi-span frames or Figure D.3 for single-span frames. A typical sub-frame is 
shown in Figure D.4. 

Figure D.4 Idealised  span 

When  a horizontal force H is applied to  the structure in Figure D.4, the 
resulting bending moment  diagram is a  shown in Figure D.5.  The bending 
moment  diagram has been drawn  on the compression side for clarity. 
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M = Hh

'5.
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BMD drawn on compression
side for clarity

Figure 0.5 Bending moment diagram

The resulting deflections are shown in Figure D.6.

The rafter end slope is given by:

MS

3 ElR

Therefore the column top deflection due to 0 is given by:

SR =hB zh1 MS hI(Hh)S
HSh2

3EIR 3EIR 3EIR

The column top deflection due to column flexure is given by:

= Mh2 = (Hh)h2 Hh
3EI 3El 3EI

The total column top deflection is given by:

( Sh2 h3=Hi +
3ElR 3E1

= +

Figure D.6 Column top deflection
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M = Hh 
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Figure 0.5 Bending moment diagram 

The  resulting  deflections  are shown in Figure D.6. 

The  rafter  end  slope  is  given by: 

MS 
3 E I R  

B=- 

Therefore the column top deflection  due  to B is given by: 

The  column  top  deflection due to  column  flexure  is  given by: 

Mh2 - (Hh)h* - Hh 
3 EI ,  3 E I ,  3 E I ,  

6 ,  = - -  - 

The total column top deflection 6 is given by: 

6 = S R + 6 ,  = H  

1 
\ 

Figure D.6 Column top deflection 
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Therefore the first-order column top stiffness K is given by:

K F 1

S/i2 h3+—
3EIR 3EI

In the frame shown above, which has been idealised as two sub-frames, the total
column top stiffness of the whole frame is the sum of the stiffnesses of the two
sub-frames, K.

The first-order sway deflection, OX, is given by:

sx H

D.2.4 First-order rafter spread and apex drop
In addition to the column top deflection, the span will spread because of the
sagging deflection in the rafter coupled with the angle at the apex. By simple
hand methods, it is only possible to produce approximate allowance for this
effect in multi-bay frames. This is done by assuming the sub-frames illustrated
in Figure D.4 are independent, calculating the spread of each span and then
calculating the total accumulation of spread across each frame.

The deflection at mid-span of a symmetrical rafter of length S can be calculated
by the moment area method as shown in Figure D.7. This method can be
adapted for any other apex position. The deflection at the mid-span 8 is given
by:

6 8ML25ML2 3ML2 ML2

48E1 48E1 48E1 16E1

S

<

Figure D.7 Deflection of a straight rafter

The spread of the pitched-roof rafter is calculated from the deflection of a
straight rafter as shown in Figure D.8. The spread is given by:

Spread = 8 (Sin a1 + Sina2)
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Therefore the first-order column top stiffness K is  given  by: 

In  the frame shown above, which has been idealised as two sub-frames, the  total 
column top stiffness of  the  whole frame is  the sum of  the  stiffnesses  of  the  two 
sub-frames, CK. 

The  first-order sway deflection, B, is given by: 

H 6 X  =- 
CK 

D.2.4 First-order  rafter  spread  and  apex  drop 

In addition to the column top deflection, the span will spread because  of  the 
sagging deflection in  the rafter coupled with  the  angle  at  the apex. By simple 
hand methods, it  is only possible to produce approximate allowance for this 
effect in multi-bay frames. This is done by assuming the sub-frames illustrated 
in Figure D.4 are independent, calculating the spread of  each span and then 
calculating the  total accumulation of spread across each frame. 

The deflection at mid-span of a symmetrical rafter of  length S can be  calculated 
by the moment area method as shown in Figure D.7. This method can be 
adapted for  any  other apex position. The deflection at the  mid-span 6 is  given 
by : 

8ML2 5 M L 2  - 3ML2 - M L ~  6 =--- - - -  

48 EI 48 EI 48 EI 16 EI 

48Ei 
48EI ML2 16ML2 
\ I 3EI - 48EI 

I 

Figure D.7 Deflection of a straight  rafter 

The  spread of  the pitched-roof rafter is calculated from the deflection of a 
straight rafter as shown in Figure D.8. The spread is  given  by: 

Spread = 6(Sin al + Sina2) 
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Figure D.8 Spread of pitched-roof rafter

D.2.5 Method for second-order notional sway deflection
The second-order notional sway deflections, ô112, is used to calculate the critical
buckling ratio for the sway mode, 2crl, for the frame when it is entirely elastic.

The method is similar to the method for calculating first-order sway deflections
in D.2.3. The difference is that Pô effects are included by using the effective
inertias, 'eff , of the members as calculated in A.3.2. These are used in the
method in D.2.3 in place of the gross inertias, I. In addition, the effect of base
stiffness may be added as explained in D.4.

The applied horizontal load, H, is the notional horizontal forces which must be
taken as the full 0.5% of the Ultimate Limit State (ULS) loads, see Section 1.6,
because the formula for calculating the critical buckling ratio,

Acr = h1200ô

assumes that 0.5% of the ULS loads has been applied to calculate ô.

The total colunm top deflection 8is given by:

Rc =H1 Sh2 +
h3

(3EIeffR 3EIeffc

Therefore the second-order colunm top stiffness K2 is given by:

K-p- 1

2
Sh2

+
h3

3EIeffR 3EIeffC

In the frame shown above, which has been idealised as two sub-frames, the total
column top stiffness of the whole frame is the sum of the stiffnesses of the two
sub-frames, K2
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Figure 0.8 Spread of pitched-roof rafter 

D.2.5 Method  for  second-order  notional  sway  deflection 

The  second-order  notional sway deflections, S,, , is used to  calculate the critical 
buckling  ratio  for the sway mode, ,lcrl , for the frame when it is  entirely  elastic. 

The method is  similar  to the method for  calculating  first-order sway deflections 
in D.2.3. The  difference  is that P 6  effects are  included by using the effective 
inertias, I,, , of the members  as  calculated in A.3.2. These  are used in the 
method in D.2.3 in place of the gross  inertias, I .  In addition, the effect of base 
stiffness may be added as  explained in D.4. 

The applied horizontal  load, H ,  is the notional horizontal  forces which must  be 
taken as the full 0.5% of  the Ultimate Limit State  (ULS)  loads, see Section 1.6, 
because the formula  for  calculating the critical buckling ratio, 

,lcr = h/2006 

assumes that 0.5% of the ULS loads has been applied to  calculate 6. 

The total column  top  deflection S i s  given by: 

Therefore the second-order  column top stiffness K2 is given by: 

I + I 

Ezeff.R 3 EIeff.c J 
In  the frame shown above, which has been idealised  as two sub-frames, the  total 
column top stiffness of  the whole frame is  the sum of  the stiffnesses of  the  two 
sub-frames, CK2 . 
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The second-order notional sway deflection, ô,2 , is given by:

H
8fl2

- ________
K2 +Kb

where Kb is calculated in D.4.

The critical buckling ratio for the first mode of frame buckling (which is the
sway mode) for the 'elastic' frame is given by:

2cri = hI20OO2

D.3 'Plastic' frame sway deflection
D.3.1 General
This Section describes methods of calculating notional sway deflections for the
frame when the stiffness of the frame has been reduced by the formation of
plastic hinges.

D.3.2 Simplifying assumptions
The load factor 2 is defined as the load factor at which the first plastic hinge
forms. To simplify hand calculations, it is assumed that a plastic hinge occurs
at one end of every span at 2. This is a conservative assumption. It is also
assumed that all the spans become mechanisms as the same load factor,
which is 2,?.

Given the above assumptions, the calculation of the sway deflections caused by
horizontal loads becomes a reasonable task.

D.3.3 Method
A typical two span frame is shown in Figure D.9 with the Ultimate Limit State
(ULS) loads. The load factor at the formation of the first hinge is defined as 2
and it is assumed that a plastic hinge forms in all spans so that the structure can
be idealised as shown in Figure D. 10. This ideal structure behaves as a series
of beam plus rafter pairs as shown in Figure D. 11, which is the same concept
as in D.2.3.

H —0

Figure 0.9
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Typical multi-span frame

The  second-order notional sway deflection, S,, , is given by: 

H S ,  = x ,  + X b  

where & is calculated in D.4. 

The  critical buckling ratio  for the first mode  of frame buckling (which is the 
sway mode) for the ‘elastic’  frame  is  given by: 

D.3 ’Plastic’ frame  sway deflection 
D.3.1 General 

This  Section  describes  methods of calculating notional sway deflections  for the 
frame when the stiffness of  the frame has been reduced by  the formation of 
plastic  hinges. 

D.3.2 Simplifying  assumptions 

The  load  factor A, is  defined  as the load factor  at which the first plastic hinge 
forms. To simplify hand calculations, it  is assumed that a plastic hinge occurs 
at  one  end of every  span  at A,. This  is  a  conservative  assumption.  It is also 
assumed that all the spans become mechanisms as the same load factor, 
which  is 4. 

Given the above  assumptions, the calculation of the sway deflections caused by 
horizontal  loads  becomes  a  reasonable  task. 

D.3.3 Method 

A typical two span frame  is shown in Figure  D.9 with  the Ultimate Limit State 
(ULS)  loads.  The load factor  at the formation of  the first hinge is defined as AI 
and it is assumed that a  plastic hinge forms in all spans so that the structure can 
be idealised as shown in Figure  D.lO.  This ideal structure behaves as  a  series 
of beam plus rafter  pairs  as shown in Figure D. 11, which is  the same concept 
as in D.2.3. 

V 

Figure D.9 Typical  multi-span  frame 
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Figure D.1O Multi-span frame with first hinge in each span

The horizontal load applied to the 'plastic' frame is the difference between the
load applied to the fully elastic model of the frame and the load applied at
plastic collapse, i.e. at load factor 2. The elastic deflections will include the
effects of 2 x (ULS loads). Therefore, the deflections of the 'plastic' frame
should be calculated for applied horizontal forces equal to (A - 21)x (ULS
loads).

The horizontal force is applied to sub-frames comprising a colunm and a rafter
pair as shown in Figure D. 11, which is similar in concept to the sub-structures
used for the analysis of the 'elastic' frames in D.2.

The difference between the 'plastic' frame and the 'elastic' frame is that only
one of the sub-frames in the plastic frame includes an external column. The
other external column is separated by a plastic hinge.

The deflections are calculated using the methods for the 'elastic' frame but with
the different sub-frames resulting from the plastic hinges.

Therefore the column top stiffness K is given by:

K
1

8
+

3EIR 3EI
Where the frame is multi-span, the total column top stiffness is the sum of the
stiffnesses of all the sub-frames, K.

The first-order sway deflection, ôXls, is given by:

8x1s

Tied portals are best modelled by taking S equal to the length of the rafter from
the apex to the eaves/valley. This is because the trusss behaviour of the

101

Figure D. 11 Idealised span

Figure D. 10 Multi-span  frame  with  first hinge in each  span 

6 

Figure D. 1 1 Idealised span 

The  horizontal load applied  to the ‘plastic’  frame is the difference between the 
load applied  to the fully elastic model  of  the frame and the load applied  at 
plastic  collapse,  i.e.  at load factor 4. The  elastic  deflections will include the 
effects of AI x (ULS  loads).  Therefore, the deflections of  the ‘plastic’  frame 
should be calculated  for applied horizontal  forces  equal  to (4 - Al)x (ULS 
loads). 

The  horizontal  force is applied to  sub-frames  comprising  a  column and a  rafter 
pair  as  shown in Figure D. 11, which is  similar in concept to  the sub-structures 
used for the analysis of  the ‘elastic’ frames in D.2. 

The  difference  between the ‘plastic’  frame  and the ‘elastic’  frame  is that only 
one of the sub-frames in the plastic frame  includes  an  external  column.  The 
other  external  column is separated by a  plastic  hinge. 

The  deflections  are  calculated using the methods for the ‘elastic’  frame but with 
the different  sub-frames  resulting  from the plastic  hinges. 

Therefore the column top stiffness K is  given by: 

( 3 E I ,  3E1,  ) 
Where the frame  is  multi-span, the total column  top  stiffness  is the sum of the 
stiffnesses of all the sub-frames, CK. 

The  first-order sway deflection, &ls, is  given  by: 

H 
CK 

sx,, =- 

Tied  portals  are  best modelled by taking S equal  to the length of the rafter  from 
the apex to  the eaveshalley. This is because the trusss  behaviour  of the 
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rafter-tie system provides some positional restraint to the apex in the sway mode
of the frame.

D.3.4 First-order rafter spread and apex drop
In addition to the column top deflection, the span will spread because of the
sagging deflection in the rafter coupled with the angle at the apex in the same
way as in D.2.4.

D.3.5 Method for second-order notional sway deflection
The method of calculating the second-order notional sway deflections, used
to calculate the critical buckling ratio for the sway mode, A , for the frame
when the stiffness of the frame has been reduced by the formation of plastic
hinges is similar to the method in D.2.5.

The method accounts for Pô effects by using the effective inertias, 'eff , of the
members as calculated in A.2.3. These are used in the method described in
D.2.3 in place of the gross inertias, I. The effect of base stiffness may be
added as explained in D.4.

The applied horizontal load, H, is the notional horizontal force, which must be
taken as the full 0.5% of the Ultimate Limit State (ULS) loads, see Section 1.6,
for the reasons given in D.2.5.

The total column top deflection S is given by:

( Sh h3Rc _HI +
3EI 3EIeff c

Therefore the second-order column top stiffness K2 is given by:

H 1K2 -
8 S/i2 ______+

3EIeffR 3EIeffC

In the frame shown above, which has been idealised as more than one
sub-frame, the total column top stiffness of the whole frame is the sum of the
stiffnesses of the two sub-frames, K2

The second-order notional sway deflection, , is given by:

= H

K2 +Kb

where, Kb is as calculated in D.4.

The critical buckling ratio for the first mode of frame buckling (which is the
sway mode) for the 'plastic' frame is given by:

= h/2OOS

Tied portals are best modelled by taking S equal to the length of the rafter from
the apex to the eaves/valley for the reason given in D.3.3
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rafter-tie system provides some positional restraint to the apex in the  sway  mode 
of  the frame. 

D.3.4 First-order  rafter  spread  and  apex  drop 

In addition to  the column top deflection, the span will spread because of  the 
sagging deflection in the rafter coupled with  the angle at  the apex in the same 
way as in D.2.4. 

D.3.5 Method  for  second-order  notional sway deflection 

The  method of calculating the second-order notional sway deflections, $,, used 
to calculate the critical buckling ratio for the  sway mode, ACT , for the frame 
when the stiffness of the frame has been  reduced by the formation of plastic 
hinges is similar to the method in D.2.5. 

The  method accounts for P 6  effects by using the effective inertias, 1 , ~  , of  the 
members  as calculated in A.2.3.  These  are used in the method described in 
D.2.3 in place of  the gross inertias, I .  The effect of  base stiffness may  be 
added  as explained in D.4. 

The applied horizontal load, H ,  is the notional horizontal force, which  must be 
taken as the full 0.5% of  the Ultimate Limit State (ULS) loads, see Section 1.6, 
for the reasons given in D.2.5. 

The total column top deflection 6 i s  given by: 

6 = 6 , + 6 ,  = H [  Sh + 
eff.R eff.c 

Therefore the second-order column top stiffness K2 is given by: 

H 1 K ,  = - 
6 

- - 

3 EI eff.R 3 E’ eff.c 

In  the frame  shown  above, which has been idealised as more than one 
sub-frame, the  total column top stiffness of the whole frame is  the sum of the 
stiffnesses of the  two sub-frames, CK2 . 

The second-order notional  sway deflection, S,,, , is given by: 

H 
C K ,  + C K ,  

‘np = 

where, K b  is as calculated in D.4. 

The critical buckling ratio for the first mode  of frame buckling (which is  the 
sway  mode) for the ‘plastic’ frame is given by: 

ACT = h/200Sn, 

Tied portals are best modelled by taking S equal to  the length of  the rafter from 
the apex to the eaves/valley for the reason given in D.3.3 
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D.4 Nominally pinned bases
BS 5950-1, Clause 5.1.3.3 says that the stiffness of the nominally pinned base
may be assumed to have a rotational stiffness equal to 10% of the column
stiffness, which may be used when checking frame stability, even where the
strength calculations assume no moment is applied to the foundation. This
stiffness is very useful in portal design, particularly for more flexible frames
such as multi-bay portals and tied portals. This stiffness is used for calculating, which is used to find 2, for the frame stability. The base stiffness of all the
columns with base fixity may be added to the sway stiffness of the frame.

An individual column loaded by a horizontal force H at the top of the column is
shown in Figure D. 12.

<
>1H :'

iOj

hL/
Figure D. 12 Sway stiffness from base fixity

ElBase stiffness, K z= 0.4—
h

Base moment, M = Rh

M Hh 5Hh2Base rotation, 0 = — = =
K 10.4E1'1 2E1

5Hh3Deflection of column top due to 8 =
2E1

H/i3
Deflection of column top due to flexure =

3El eff

SHh3 H/i3Total column top deflection, S = +
2E1 3EIeff

H 1
Sway stiffness due to base stiffness, Kb = — ________________

5/i3 h3

2E1 3EIeff

This stiffness is additive to the frame stiffness for calculating and 5 in
D.2.5 and D.3.5.
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D.4 Nominally pinned bases 
BS 5950-1,  Clause 5.1.3.3 says that the stiffness of  the nominally pinned base 
may be assumed to  have a  rotational  stiffness equal to 10% of  the column 
stiffness, which may  be used when checking  frame  stability,  even where the 
strength  calculations assume no moment is applied to  the foundation.  This 
stiffness is very useful  in portal design,  particularly for more flexible frames 
such as multi-bay portals and tied portals.  This  stiffness is  used for  calculating 
4, which  is used to find AC, for the frame  stability.  The base stiffness of all  the 
columns with base fixity may be added to  the sway  stiffness of  the frame. 

An individual  column loaded by a  horizontal  force H at the top of the column is 
shown  in  Figure  D.12. 

H 

Jf l l l I I I 
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l 

Figure D. 12 Sway stiffness  from base fixity 

Base stiffness, K 

Base moment, M 

:. Base rotation, 

EI 

h 
= 0 . 4 -  

l -  I 

5 Hh3 :. Deflection of column top due to B = ~ 

2 EI 

Hh Deflection of column top due to  flexure = 
3 EI e f f  

5Hh3  Hh3 :. Total  column  top  deflection, 6 = ____ 
2EI  3EI , ,  

+- 

H 1 :. Sway stiffness due to base stiffness, K ,  = - _  - 

This  stiffness is additive  to the frame  stiffness  for  calculating 4,2 and 6&, in 
D.2.5  and  D.3.5. 
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APPENDIX E Hinge deflections by
interpolation

E. 1 Vertical deflections
This appendix gives an approximate method that may be used in the energy
method of second-order analysis (see Section 5.6 and Appendices A and B) to
calculate the deflections of plastic hinges in rafters that do not occur at the
points for which deflection output is available. For example, software
commonly gives the deflections at the apex of a span. The hand calculation
methods in Appendix A and Appendix D give deflections at mid-span. Where
there are two hinges in any one span, it is safe to assume that the deflections of
one hinge are the deflections of the apex (or mid-span) and that the deflections
of the other hinge are the deflections of the nearest eaves (or valley). This
assumption does not normally affect the economy of the method significantly.
However, where there is only one hinge in the span, the deflections of the hinge
should be taken as the deflections of the apex (or mid-span), unless they are
calculated more accurately. Where the hinge is not far from the eaves (or
valley), more accurate values of deflection may improve the economy
significantly. For these mechanisms, the deflection can be found by
interpolation. This may be done by assuming the deflection at the hinge is
related to the known deflection according to the deflected form of a simply
supported beam.

The deflection, y, of a simply supported beam of span L supporting a uniformly
distributed load, w, is derived from:

4 (wL 3 (wL
Ely =I— —I——x +l—Ix24) 12) 24 )

=[l6( 32( +16(J][L9
Therefore, the ratio of the deflection at point aL to the deflection at point JIL
(see Figure E.1), is given by:

Ya a4—2a3+a
y fl4—2fl3+

where JIL is the mid-span, this reduces to:

=3.2(a —2a3 +a)

Taking /3 for the point in the span for which the deflections are known and a'
for the point at which the hinge occurs, the deflection at the hinge can be
calculated.
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APPENDIX E Hinge deflections by 
interpolation 

E. l Vertical  deflections 
This  appendix gives an  approximate  method that may be used  in  the energy 
method of second-order analysis (see Section 5.6 and Appendices  A and B) to 
calculate the deflections of plastic hinges in rafters that do not occur at the 
points for which deflection output is available. For  example, software 
commonly gives the deflections at the apex of a span. The hand calculation 
methods in Appendix  A  and  Appendix D give deflections at mid-span. Where 
there are  two hinges in any one span, it is safe to assume that the deflections of 
one hinge are the deflections of the apex (or mid-span)  and  that  the deflections 
of the other hinge are the deflections of the nearest eaves (or valley). This 
assumption does not normally affect the economy of the method significantly. 
However,  where there is only one hinge in the span, the deflections of  the  hinge 
should be taken as the deflections of  the apex (or mid-span), unless they are 
calculated more accurately. Where the  hinge is not far  from the eaves (or 
valley), more accurate values of deflection may improve the economy 
significantly. For these mechanisms, the deflection can be  found  by 
interpolation. This may be done by assuming the deflection at the  hinge  is 
related to the known deflection according to  the deflected form of a simply 
supported beam. 

The deflection, y, of a simply supported beam  of span L supporting a uniformly 
distributed load, W, is derived from: 

Therefore, the ratio of  the deflection at point d, to  the deflection at point PL 
(see Figure E.l), is given by: 

4 3 
y a  - a -2a + a  - -  

Y p  P 4  - v 3  + p  

- Y ,  = 3 . 2 ( a 4  - 2 a 3  + a )  

where PL is  the mid-span, this reduces to: 

YP 

Taking P for the point in the span for which  the deflections 
for the point at  which  the  hinge occurs, the deflection at 
calculated. 

are known  and a 
the  hinge can be 
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Figure E.1 Distances aL and fiL for interpolation

E.2 Horizontal deflection
The horizontal deflection may be calculated by linear interpolation between the
deflection at the apex (or mid-span) and the deflection of the nearest columns
(or valley) on the other side of the hinge.
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Figure €.l Distances CXL and PL for  interpolation 

E. 2 Horizontal  deflection 
The  horizontal  deflection may be calculated by linear  interpolation between the 
deflection  at the apex (or mid-span) and the deflection of the nearest columns 
(or valley) on the other side of the hinge. 
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WORKED EXAMPLES

Single span steep roof portal frame 109

Tied portal frame 1 27

Two-span portal frame 151

Two-span portal frame with hit/miss internal columns 1 73
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WORKED  EXAMPLES 

Single  span  steep  roof  portal  frame 

Tied  portal  frame 

Two-span  portal  frame 

Two-span  portal  frame  with  hithiss  internal  columns 
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127 

151 

173 

107 
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Height of column from base to Neutral Axis of Rafter = 6.0 m
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INPUT FROM FIRST-ORDER ANALYSIS

1 .1 General Arrangement

The calculations have been carried out using by spreadsheet software. The
numerical values presented below are the values from the spreadsheet rounded
to a suitable number of significant figures.

1000-hE--
15000 15000

1o

Pinned 30000

600

54001

Angle of rafters: = 30°

Span = 30 m

Developed length of rafter = 30 = 34.64 m
cos30°

Pinned
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~~ 

Date July 2001 
CALCULATION SHEET Checked by WIS 

INPUT  FROM FIRST-ORDER ANALYSIS 

1.1 General Arrangement 

The  calculations have been  carried  out  using by spreadsheet  software.  The 
numerical  values  presented  below  are the values  from the spreadsheet rounded 
to  a  suitable  number of significant  figures. 

1 4 6 6 0  I -406 x 178 UB67 
I 

~7 Pinned 30000 < > 

a, = a; = 30" Angle of rafters: 

Span = 30  m 

Developed  length of rafter = - 30 - - 34.64  m 
cos30" 

Height of column  from  base  to  Neutral Axis of Rafter = 6.0 m 
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1.2 Loading

Frame spacing = 6 m

Dead 0.100 X 6.000 X 1.4
Service = 0.150 x 6.000 X 1.4
Imposed = 0.600 x 6.000 x 1.6
Self Weight = 80 x 102 x 1.000 x 1.4

ULS loads on plan = 1.26 + 5.76 = 7.02 kN/m

ULS loads on slope = 0.84 + 1.12 = 1.96 kN/m

ULS load transverse to slope = 7.02Cos230° + 1.96Cos30° = 6.96 kN/m

Taking notional horizontal forces (NHF) as 0.5% of the column base reactions

Total vertical load = 30(7.02 = 1 .96/Cos 30) = 279 kN

Required NHF 0.005 x 279 = 1.39 kN

= 0.840 along slope
= 1.260 on plan
= 5.760 on plan
= 1.120 along slope

Clause 2.4.2.4
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Silwood Park, Ascot,  Berks SL5 7QN .Sinole Snan Stpen Rnnf Pnrtal Frame 

I Telephone: (01 344) 623345 
Fax: (01344) 622944 

I 

CALCULATION SHEET l W Made  by 

1.2 Loading 

Frame  spacing = 6 m 

Dead = 0,100 X 6.000 X 1.4 = 0.840 along slope 
Service = 0.150 X 6.000 X 1.4 = 1.260 on plan 
Imposed = 0.600 X 6.000 X 1.6 = 5.760 on  plan 
Self Weight = 80 x x 1.000 x 1.4 = 1.120 along slope 

ULS loads  on  plan = 1.26 + 5.76 = 7.02 kN/m 

ULS loads  on  slope = 0.84 + 1.12 = 1.96 kN/m 

ULS load  transverse  to slope = 7.02Cos2  30" + 1.96Cos30" = 6.96 kN/m 

Taking  notional  horizontal  forces  (NHF) as  0.5% of  the column base reactions 

Total  vertical  load = 30(7.02 = 1.96/Cos30) = 279 kN 

Required NHF = 0.005 X 279 = 1.39 kN 

)ate July 2001 

)ate July 2001 

Clause 2.4.2.4 
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1 .3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.
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Client DETR Made  by CMK Date July 2001 

Checked by WIS 

1.3 Hinge  Incremental  Rotations 

The  values of incremental  rotation of the hinges  are taken from the first-order 
collapse  mechanism.  These  are the incremental  rotations  as used to  calculate 
the collapse  factor of the frame using the classic Rigid-Plastic (Virtual  Work) 
method . 

The  second-order  analysis  uses the relative magnitude of the instantaneous 
rotations, so the absolute magnitude of each  rotation  does not affect the 
calculations. 

Where the analysis has been performed by methods other than  the Rigid-Plastic 
method  (e.g. by the Semi-Graphical  method), the incremental  rotations  can be 
deduced from the geometry of the frame and the position of the hinges. It is 
not necessary  to  repeat the calculation of the collapse  factor by  the 
Rigid-Plastic  method. 

Failure Mechanism 

1 1 1  

)ate July 2001 



Find Node Locations

PtA-(0,0) =

PtB-'(0,6) =

Pt C- (15, 6 + 15 tan 30) =

Pt D- (30, 6) =

PtE—' (30,0) =

Pt a -. (12.698 Cos 30, 6 + 12.698 sin 30) =

Pt b (30, 5.400) =

Find Centre of Rotation I

V1
= 30 x

-
= 30 x 12.349-0.0 = 33.689 mX - XA 10.997-0.0

Rotation at 1, =

Rotation at E, eE

1.4 Axial forces at ULS from first-order analysis

LB column: at base = 142 kN, at haunch

LH rafter: at column = 126 kN, at apex

RH rafter: at column = 126 kN, at apex

LII column: at base = 142 kN, at haunch

112

= 136 kN

= 58 kN

= 59kN

= 136 kN
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Date

Date
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July

2001

2001

(0, 0)

(0, 6)

(15, 14.660)

(30, 6)

(30, 0)

(10.997, 12.349)

(30, 5.400)

X1 =30

Pt I -, (30, 33.689)

Hinge Rotations

Taking the instantaneous rotation at A = 0

12.345
=0.5790

33.689-12.345

=
33.689 - 5.400 = 0.579 0 x 5.239 = 3.032 8

5.400
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Find  Node  Locations 

Pt A -  (0, 0) = (0, 0) 

Pt B - (0, 6) = (0, 6) 

Pt C -  (15,  6 + 15 tan 30) = (15,  14.660) 

Pt D- (30,  6) = (30,  6) 

Pt E - (30, 0) = (30, 0) 

Pt  a - (12.698 Cos 30,  6 + 12.698 sin 30) = (10.997, 12.349) 

Pt  b - (30,  5.400) = (30, 5.400) 

Find  Centre of Rotation I 

x, = 30 

Pt I - (30,  33.689) 

Hinge  Rotations 

Taking the instantaneous  rotation  at A = 8 

12.345 
Rotation  at I, 4 = 0 x 33.689-12.345 = 0.579 e 

33.689 - 5.400 
Rotation  at E, BE = 4 x 

5.400 
= 0.579 e X 5.239 = 3.032 e 

1.4 Axial forces at ULS from first-order  analysis 

LH column:  at base = 142 k N ,  at  haunch = 136 kN 

LH rafter:  at  column = 126 kN,  at  apex = 58kN 

RH rafter:  at  column = 126 kN, at apex = 59 kN 

LH column:  at base = 142 k N ,  at  haunch = 136 kN 

)ate July 2001 

)ate July 2001 
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1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1:2000 Annex 1.2. These
may be taken from section tables.

Mrx =
PySrx

For the axial forces in this frame under this load case

Mpr rafter = 403 kNm

M column = 452 kNm

1.6 Load factor at formation of the first hinge, A1

From the frame analysis output, the load factor at the formation of the first
hinge is:

A1 = 1.232

1 .7 Plastic collapse factor, A

From the frame analysis, the plastic collapse factor calculated by first-order
analysis is:

= 1.503

1.8 Member inertias, l

LHcolumn: 457x191x74UB : 4 = 33320 cm4

LHrafter: 457x191x67UB: 4 = 29380 cm4

RH rafter: as LH rafter

RH column: as LH column
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1.5 Reduced Plastic Moments  at ULS from first-order  analysis 

Use the reduced moment capacity  for the sections  to  account  for the co-existent 
axial  force,  calculated in accordance with BS5950-1:2000 Annex 1.2.  These 
may be taken from  section  tables. 

MIX = P y  SIX 

For the axial  forces in this  frame  under this load case 

MPr rafter = 403 kNm 

MP column = 452 kNm 

1.6 Load factor at formation  of  the first hinge, A, 

From the frame  analysis  output, the load  factor  at the formation of the first 
hinge is: 

A, = 1.232 

From the frame  analysis, the plastic  collapse  factor  calculated by first-order 
analysis  is: 

.2, = 1.503 

1.8 Member inertias, I, 

LH column: 457 X 191 x74 UB : I, = 33320 cm4 

LH  rafter: 457 X 191 x67 UB: I,  = 29380 cm4 

RH  rafter:  as LH rafter 

RH  column:  as LH column 

)ate July 2001 

)ate July 2001 
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1 .9 Deflections of frame at A, (formation of the first hinge)

ô0 =-79.4mm ôyB 0.5mm

ô = 3.4 mm = 146.1 mm

= 86.3 mm = 0.5 mm

2. SECOND-ORDER ANALYSIS

2.1 Axial force in members

The axial force in the members is calculated from the first-order analysis
output. The values are taken as the mean of the axial force at the ends of the
member where there is no major step in the axial force. Where there is a
major step in the axial force, e.g. at the underside of a crane bracket on a
column, the value should be taken as the mean of the ends of the most highly
loaded segment.

LH col: take mid-height ULS = (142 + 136)/2 = 139 kN

LH rafter: take mid-length = (126 + 58)/2 = 92 kN

RH rafter: take mid-length ULS = (126 + 59)12 = 93 kN

RH col: take mid-height ULS = (142 + 136)/2 = 139 kN

2.2 Bending deflections of the "elastic" frame A.3

2.2.1 Stiffness reduction factors allowing for P.o effects A.3.2

LH column:

I,, = 33320 cm4, /z = 6000 mm, a = 2.0 for truly pinned bases,

'icr = m2EI/(a'h)2 = it2 x205000 X 33320 x 10/(2.O X6000)2 = 4682 kN

ULS 139 kN

Stiffness reduction factor ('PJLSIPr) = 1 — 139/4682 = 0.970

114

The  Steel 
Construction 
Institute 

Job No: CDS  139 Page 6 of 17 Rev A 

Job Title BS 5950 Portals 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 7QN Single Span Steep Roof Portal Frame 
Telephone: (01 344) 623345 
Fax: (01 344) 622944 Client DETR Made by CMK C 

CALCULATION SHEET I Checked by WIS 

1.9 Deflections of frame at A, (formation of the first hinge) 

S,, =-79.4 mm S,, = 0.5 mm 

S,, = 3.4 mm S,, = 146.1 mm 

S,, = 86.3 mm S,, = 0.5 mm 

2. SECOND-ORDER ANALYSIS 

2.1 Axial force in members 

The axial force in the members is calculated from the first-order analysis 
output. The values are taken as the mean of the axial force at the ends of the 
member  where there is no  major step in the axial force.  Where there is a 
major step in the axial force,  e.g.  at the underside of a  crane bracket on  a 
column, the value should be taken as the mean of  the ends of the most highly 
loaded segment. 

LH col: take mid-height P,,, = (142 + 136)/2 = 139 kN 

LH rafter: take mid-length P,, = (126 + 58)/2 = 92kN 

RH rafter: take mid-length P,,, = (126 + 59)/2 = 93 kN 

RH col: take mid-height PuLs = (142 + 136)/2 = 139 kN 

2.2 Bending deflections of the "elastic" frame 

2.2.1 Stiffness reduction factors allowing for P.6 effects 

LH column: 

I ,  = 33320  cm4, h = 6000  mm, a = 2.0  for truly pinned bases, 

P,, = 7~*EI / (ah )~  = n2 x 205000 x 33320 x 104/(2.0 x 6000)2 = 4682 kN 

PuLs = 139 kN 

Stiffness reduction factor (l-PULS/Pcr) = 1 - 139/4682 = 0.970 

)ate July 2001 

)ate July 2001 

A. 3 

A.3.2 
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RH column:

'3cr = as LH column

ULS = 139 kN

Stiffness reduction factor (1P/Pcr) = 1 - 139/4682 = 0.970

LH rafter:

= 29380 cm4, L = 34640 mm, a = 0.5 for single span "elastic" frame

'icr = Tt2EI/(cPL)2 = 2x2O5OOOx2938Ox 10/(0.5 X34640)2 = 1982 kN

P=92kN
Stiffness reduction factor (1P/Pcr) = 1 — 92/1982 = 0.953

RH rafter:

= as LII rafter

PULS=93kN

Stiffness reduction factor (1P/Pcr) = 1 — 93/1982 = 0.953

2.2.2 Second-order magnification factors A. 3.3

Sway mode magnification factor Acri/(Acri - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness:

K = 1 D.2.5
2

Sh2 _____
3EIffR

+

This frame is taken as truly pinned, so there is no contribution to sway
stiffness from base stiffness.

LH rafter and column:

Rafter 'effR = 1P!jI/Pcr) = 29380 xO.953 = 28012 cm4
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RH column: 

P,, = as LH column 

PuLs = 139 kN 

Stiffness  reduction  factor (l-PULS/Pcr) = 1 - 139/4682 = 0.970 

LH rafter: 

Z, = 29380 cm4, L = 34640 mm, a = 0.5 for  single span “elastic”  frame 

P,, = T C ~ E Z / ( ~ ) ~  = ~ ~ ~ X 2 0 5 0 0 0 ~ 2 9 3 8 0 X  104/(0.5 ~ 3 4 6 4 0 ) ~  = 1982 kN 

PuLs = 92 kN 

Stiffness  reduction  factor (l-PuLs/Pcr) = 1 - 92/1982 = 0.953 

RH rafter: 

P,, = as  LH  rafter 

PUB = 93 kN 

Stiffness  reduction  factor (l-PULsIPcr) = 1 - 93/1982 = 0.953 

2.2.2 Second-order magnification factors 

Sway  mode magnification factor Acrl/(Acrl - 1) 

The  notional sway deflection  is  calculated  from the sum of  the stiffnesses K for 
each of the column  and  rafter  pairs: 

Sway stiffness  from  column  and  rafter  stiffness: 

1 K2 = 

This  frame  is  taken  as  truly  pinned, so there  is  no  contribution  to sway 
stiffness  from base stiffness. 

LH rafter and  column: 

Rafter : Z,,, = Zx(l-PuLs/Pcr) = 29380~0.953 = 28012 cm4 

~ 

la te July 2001 
~~ ~ 

A.3.3 

D.2.5 
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Column : 'eff.c = 1x(1Uis1'1cr) = 33320 xO.970 = 32334 cm4

K2=
1

17321 (6000)2 + (6000)
3x205000x28012x i04 3x205000x32334x io

= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5 N/mm

RH rafter and column:

Rafter: 4ffR = Ix(l-PuLs/Pc) = 29380x0.953 = 28008 cm4

Column : = 1x('ULS,''cr) = 33320x0.970 = 32329 cm4

1

17321 (6000)2 + (6000)
3x205000x28008x i04 3x205000x32329x i04

= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5 N/mm

Total frame:

= 212.5 + 212.5 = 425 N/mm

H = 0.005 x [Sum of the column reactions]

=0.005x(278) = 1.39kN

= H/>JK = 1390/425 = 3.27 mm

'crl = h/200ô2 = 6000/(200 X 3.27) = 9.2

Sway mode magnification factor 2cri/(Acri - 1) = 9.2/(9.2 - 1) = 1.122

Symmetrical mode magnification

The symmetrical mode magnification is taken as the magnification arising from
using the effective inertia 'eff = 1(1 — Pjs/Pcr) of the members.

Sway mode magnification factor Acr2/(Acr2 - 1) = 1/[minimum (1— P/Pcr)]

= 1/0.953 = 1.049
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column : Zeff,c = Zx(l-Puu/Pcr) = 33320~0.970 = 32334 cm4 

1 

17321 (6000)* + (6000)3 
3 ~ 2 0 5 0 0 0 ~ 2 8 0 1 2 ~  104 3 ~ 2 0 5 0 0 0 ~ 3 2 3 3 4 ~  104 

= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5  N/mm 

RH rafter and column: 

Rafter : Zeff.R = Zx( 1 -Pu,,/Pcr) = 29380 X0.953 = 28008 cm4 

Column : Zeff,c = Zx(l-PuLs/Pcr) = 33320~0.970 = 32329 cm4 

17321 (6000)2 + (6000)3 
3 X 205000 X 28008 X lo4 3 X 205000 X 32329 X lo4 

= 1/(0.00362 + 0.00109) = 1/0.00471 = 212.5  N/mm 

Total  frame: 

2 K  = 212.5 + 212.5 = 425 N/mm 

H = 0.005 X [Sum of  the column reactions] 

= 0.005 X (278) = 1.39 kN 

S,,, = EH/E:K = 1390/425 = 3.27 mm 

Acrl = h/2006,,, = 6000/(200 x 3.27) = 9.2 

Sway  mode magnification factor Acrl/(Acr, - 1) = 9.2/(9.2 - 1) = 1.122 

Symmetrical  mode  magnification 

The  symmetrical mode magnification is taken as the magnification arising from 
using the effective inertia Zeff = Z(l - PuLS/Pcr) of  the members. 

Sway  mode magnification factor Acr2/(Accr2 - 1) = l/[minimum  (1- PIP,,)] 

= 1/0.953 = 1.049 

)ate July 2001 

late July 2001 
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2.2.3 Deflection calculations A.3.4

Sway deflections D.2.3

The first-order sway deflection ôX1 is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of Acr)

I

Sh2 h3

3EIR
+

3EI

LH rafter and column:

Rafter : = 29380 cm4

Column : I, = 33320 cm4

K= 1

17321 (6000)2 + (6000)
3x205000x29380x i04 3x205000x33320x i04

= 11(0.00345 + 0.00105) = 1/0.00451 = 222.0 N/mm

RH rafter and column:

As LH rafter and column

Total frame:

First-order sway deflections:

= 222 + 222 = 444 N/mm

H =
A1 x H1 = 1.232 x 1.39 = 1.71 kN

= EH/2K = 1710/444 = 3.85 mm

oK =J =3.85mm
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2.2.3 Deflection calculations 

Sway deflections 

The first-order sway deflection 6 X , ,  is calculated from the sum of  the 
stiffnesses K for each of  the column  and rafter pairs.  (The base stiffness of 
nominally  pinned bases is not included because this is not a stability 
calculation like the calculation of A,,) 

K =  1 
S h 2  

LH rafter and column: 

Rafter : ZR = 29380  cm4 

Column : Z, = 33320 cm4 

1 

17321 (6000)2 (6000)3 
3x205000x29380x  lo4  3x205000x33320X  lo4 

+ 

= 1/(0.00345 + 0.00105) = 1/0.00451 = 222.0  N/mm 

RH rafter and  column: 

As LH rafter and  column 

Total frame: 

First-order  sway deflections: 

Z K  = 222 + 222 = 444 N/mm 

H = A, X HuLs = 1.232 X 1.39 

A = EH/EK = 1710/444 

dX1, = A = 3.85  mm 

= 1.71 kN 

= 3.85  mm 
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Second-order deflections

OX2
= (OX1

—
OXis){Acr2/(2cr2

— l)} + OXis {'cri/('cri — 1)} A.3.4

OY2
= OY1 {'cr2'(cr2 - 1)}

= (-79.4 - 3.85)(1.049} + 3.85{1.122} = -83.0 mm

= 0.5{1.049} = 0.5 mm

OX = (3.4 - 3.85){1.049} + 3.85{1.122} = 3.8 mm

OY1
= 146.1{1.049} = 153.2 mm

0XD = (86.3 - 3.85){1.049} + 3.85{1.122} = 90.8 mm

OY = 0.5{1.049} = 0.5 mm

The hinges at "a" and "b" are so close to points C and E that the deflections
at the hinges can be assumed to be at points C and E. The effect on the
Energy summation is insignificant.

2.3 Bending deflections of the "plastic" frame A.4

2.3.1 Stiffness reduction factors allowing for P.o effects A.4.2

LH column:

As "elastic" frame, stiffness reduction factor (l—PULs/P) = 0.970

RH column:

As "elastic" frame, stiffness reduction factor (lPij/Pcr) = 0.970

LH rafter:

= 29380 cm4, L = 34640 mm, a = 1.0 for "plastic" frame

cr = it2EI/(ct'L)2 = 112x205000X29380x104/(1.0x34640)2 = 495 kN

ULS = 92 kN

Stiffness reduction factor (1PfLSIPcr) = 1
— 92/495 = 0.814
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Second-order deflections 

a 2  = (a, - dXIs){&2/(Jcr2 - 1)) + {Jcr,/(Jcr1 - 1)) 

SY2 = JYl{Jcr2/(Jcrz - 1)) 

SX, = (-79.4 - 3.85){1.049) + 3.85i1.122) = -83.0 mm 

SY, = 0.5{ 1.049) = 0.5 mm 

a, = (3.4 - 3.85){1.049) + 3.85{1.122) = 3.8 mm 

SY, = 146.1{  1.049) = 153.2 mm 

d X D  = (86.3 - 3.85){1.049) + 3.85{1.122) = 90.8 mm 

SY, = O S {  1.049) = 0.5 mm 

The hinges at “a” and “b” are so close to points C and E that the deflections 
at the hinges can be assumed to be at points C and E.  The effect on the 
Energy  summation is insignificant. 

2.3 Bending deflections of the ”plastic“ frame 

2.3.1 Stiffness reduction factors allowing for P.5 effects 

LH column: 

As “elastic”  frame, stiffness reduction factor (l-PuLs/Pcr) = 0.970 

RH column: 

As “elastic”  frame, stiffness reduction factor (l-Pum/Pcr) = 0.970 

LH rafter: 

Z, = 29380 cm4, L = 34640  mm, a = 1.0 for “plastic”  frame 

Pcr = T C ’ E Z / ( ~ ) ~  = X’ X205000  X29380 X 104/(1 .OX 34640)2 = 495 kN 

PuLs = 92 kN 

Stiffness reduction factor (l-PuLs/Pcr) = 1 - 92/495 = 0.814 

l a te  July 2001 

l a te  July 2001 

A.3.4 

A.4 

A.4.2 
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Made
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Date

Date

July
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2001

2001

RH rafter:

'cr = as LH rafter

1'uis = 93

Stiffness reduction factor (1P/Pcr) = 1 - 93/495 0.813

2.3.2 Second-order magnification factors A.4.3

Sway mode magnification factor krp"O'crp 1)

The notional sway deflection is calculated from the stiffness K2 of the LH
colunm and rafter pair (the RH colunm is hinged at the top and pinned at the
bottom, reducing the stiffness to zero):

Sway stiffness from column and rafter stiffness:

K2 =
1 D.2.5

Sh2 h3

3EIeffR
+

This frame is taken as truly pinned, so there is no contribution to the sway
stiffness from base stiffness.

LII column and rafters:

Rafters : 'effR
= 'x('ULs"1'cr) = 29380xO.813 = 23894 cm4

Column : = 'x('ULS'11'cr) = 33320x0.970 = 32334 cm4

K2=
1

34641 (6000)2 + (6000)
3x205000x23894x iO 3x205000x32334X i04

= 11(0.00849 + 0.00109) 1/0.00957 105 N/mm

Total frame:

= 105 N/mm

H = 0.005 x [Sum of the column reactions]

=0.005x(279) = 1.39kN
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RH rafter: 

Pcr = as LH rafter 

Pus = 93 m 

Stiffness reduction factor (1- Pus/Pcr) = 1 - 93/495 = 0.813 

2.3.2 Second-order magnification  factors 

Sway  mode  magnification  factor Aap/(Aap - 1) 

The notional sway deflection is calculated from the stiffness K, of the LH 
column  and rafter pair (the RH column is hinged at the top and  pinned at the 
bottom, reducing the stiffness to zero): 

Sway stiffness from  column  and rafter stiffness: 

1 K2 = 
( S h 2  h 3  ) - + -  

This  frame is taken as truly pinned, so there i s  no contribution to the  sway 
stiffness from base stiffness. 

LH column  and rafters: 

Rafters : Zeff.R = Zx( 1- PuLs/Pcr) = 29380 x0.813 = 23894 cm4 

Column : Zeff,c = Zx(l-PuLS/Pcr) = 33320 x0.970 = 32334 cm4 

1 K, = , 

3464 1 (6000)2 (6000)3 + 
3 x 205000 x 23894 x lo4 3 x 205000 x 32334 x lo4 

= 1/(0.00849 + 0.00109) = U0.00957 = 105 N/mm 

Total  frame: 

X = 105 N/mm 

H = 0.005 X [Sum of  the column reactions] 

= 0,005 x (279) = 1.39 kN 

)ate July 2001 

)ate July 2001 

A.4.3 

D.2.5 
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= EH/EK = 1390/105 = 13.3 mm

= hI200o = 6000/(200 x 13.3) = 2.26

Sway mode magnification factor A/(A - 1) = 2.26/(2.26 1) = 1.80

2.3.3 Deflections from vertical loads A.4.5

The loads applied to the "plastic" frame = (A,,
— 21)(loads at ULS)

(A - 2) = (1.503 - 1.232) = 0.271

wP = 0.271(7.02Cos230° + 1.96Cos30°) = 1.89 kN/m

Sway

This arises due to the rotation of the column without an adjacent hinge caused
by the end rotation of the rafter spanning from colunm to column.

wS3
Second-order end slope of the rafter, 0R2 =

24 ElR crp

1.89 x 34640
0R2

X 1.80 = 0.0975 radians
24 x 205000 x 29380 x iO

Horizontal deflection of B, C, D = hOR

6000 x 0.0975 = 585 mm

Mid-span drop

5 w, S4
Mid-span deflection of the rafter, ô, =

E 'R

5 1.89 x 34640
ÔB2

= X 1.80 = 1055 mm
384 205000 x 29380 x i04

= ô-, /Cosa' = 1055/Cos 30° = 1218 mm

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

1 20
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A = ZH/ZK = 1390/105 = 13.3 mm 

ACT = h/200Snp = 6000/(200 x 13.3) = 2.26 

Sway  mode magnification factor Ac,.J(AcT - 1) = 2.26/(2.26 - 1) = 1.80 

2.3.3 Deflections from vertical  loads 

The  loads applied to the "plastic" frame = (Ap - A,)(loads at ULS) 

(Ap - A,) = (1.503 - 1.232) = 0.271 

WP = 0.271(7.02Cos230" + 1.96Cos30") = 1.89  kN/m 

Sway 

This  arises  due to the rotation of  the column without an adjacent hinge caused 
by  the end rotation of the rafter spanning from  column to column. 

1.89 X 346403 
24 X 205000 X 29380 X lo4 

x 1 -80 = 0.0975 radians 

Horizontal deflection of B, C, D = heR 

= 6000 x 0.0975 = 585 mm 

Mid-span drop 

5 WP s4 ACT 
Mid-span deflection of  the rafter, S,, = - -- 

384 E ZR ACT- l 

5  1.89 x 346404 
- 
-- 

384 205000 X 29380 X lo4 
X 1.80 = 1055  mm 

4 p e x  Z Z  /Cosa = 1055/Cos  30" = 1218 mm 

Spread 

This is caused by  the drop of  the angle in  the rafter which is at the apex in this 
frame. Because this frame is a  symmetrical pitched roof portal, the drop of 
the angle is the mid-span  drop calculated above. 

late July 2001 

'ate July 2001 

A.4.5 
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ôspreadD = ôB2 (Sinai + Sincr2) = ÔB (2Sin 30°)

= 1055(2 x 0.500) = 1055 mm

ôspread,C
=

ôB2 Sin a'j = 1055 x 0.500 528 mm

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, °R2 0.0975 radians

Off- set of the hinge below the rafter, e = 6000 - 5400 = 600 mm

Horizontal displacement of the hinge at G eO = 600 x 0.0975

= 59mm

2.3.4 Deflections from horizontal loads A.4.6

The loads applied to the "plastic" frame = (A — 21)(loads at ULS)

(A - ,) = (1.503 - 1.232) = 0.271

The ULS horizontal load in this load case is the notional horizontal force

H =(A-A1)xNHF =0.271x1.39 =0.38kN

The sway deflection is calculated from the sum of the stiffnesses K of the LH
column and rafter pair (the RH column is hinged at the top and pinned at the
bottom, reducing the stiffness to zero).

1 1

Sh2
3EIR 3EI 1

The first—order stiffness of the LII rafter and column pair is the same as for
the "elastic" frame:

1 = 125.7
S /z2 h3

3EIR

K = 125.7 >< (1/1.80) = 70.0 N/mm
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dspread,D = S,, (Sina, + Sina,) = S, (2Sin 30”) 

= 1055(2 X 0.500) = 1055 mm 

dspread,C = S,, Sin a, = 1055 X 0.500 = 528 mm 

Column hinge horizontal displacement 

The hinge occurs  at the underside of the haunch, which is at  a  distance from 
the neutral  axis of the rafter,  causing  an  additional  horizontal  displacement. 

Second-order  end slope of  the rafter, BR, = 0.0975 radians 

Off-set of the hinge below the rafter,  e = 6000 - 5400 = 600 mm 

Horizontal  displacement of  the hinge at G = eeR = 600 x 0.0975 

= 59mm 

2.3.4 Deflections  from  horizontal loads 

The  loads  applied to  the “plastic”  frame = (4 - A,)(Ioads at ULS) 

(A, - A,) = (1.503 - 1.232)  0.271 

The ULS horizontal  load in this  load  case  is the notional horizontal  force 

H = (A, - A,) X NHF = 0.271 X 1.39 = 0.38 kN 

The sway deflection is calculated  from the sum of  the stiffnesses K of the LH 
column  and  rafter  pair  (the RH column  is  hinged  at the top and  pinned  at the 
bottom,  reducing the stiffness  to  zero). 

1 

The  first-order  stiffness of  the LH rafter  and  column  pair  is the same  as  for 
the “elastic”  frame: 

1 
= 125.7 

I K, = 125.7 X (U1.80) = 70.0 N/mm 

)ate July 2001 

A.4.6 

121 
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Sway deflection = 380/70 = 5.4 mm

Mid-span drop

The sway deflection induces an additional deflection at the apex

ML2 )
= r crp

sm2 16 EIR crp 1

whereM = H h1 = 380 x 6000 2.26 kNm

2.26x 106 x346412
ô2 = __________________ x 1.80 = 5.1mm

16x205000x29380x i04

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid— span drop calculated above.

pread,D
= ô (Sina'1 + Sina) = ÔB (2Sin 30°)

=5.1(2X0.500) =5.1mm

pread,C
= m2 Sin a = 5.1 x 0.500 = 2.5 mm

2.4 Axial forces for the energy calculation A.5

The total of the axial loads in the columns is not affected by second-order
effects, so P2 = P1 which is taken as the mid-height value calculated in 2.1
above.

LH column: P2 = 139 kN

RH column: P2 = 139 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.
Calculate Ia and lb from the values in Section 2.2 of the worked example.

Mid-span drop = drop from "elastic" + drop from "plastic"

= from 2.2.3 + from 2.3.3+ from 2.3.4

1 22
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Sway deflection = 380/70 = 5.4 mm 

Mid-span drop 

The sway deflection induces an additional deflection at the apex 

where M = 2 Hi hi = 380 X 6000 = 2.26 kNm 

2.26X106X346412 

16 X 205000 X 29380 X lo4 .’. $m*= X 1.80 = 5.1 mm 

Spread 

This is caused by  the drop of  the angle in  the rafter which is at the apex in this 
frame.  Because this frame is  a symmetrical pitched roof portal, the drop of 
the angle is the mid-span  drop calculated above. 

d,spread,D = S,, (Sina, + Sind;) = S, (2Sin 30”) 

= 5.1(2 X 0.500) = 5.1 mm 

2.4 Axial forces for the energy  calculation 

The total of  the axial loads in the columns is not affected by second-order 
effects, so P2 = P, which is taken as the mid-height value calculated in 2.1 
above. 

LH column: P2 = 139 kN 

RH  column: P2 = 139 kN 

The rafter axial forces  are affected by  the drop of  the rafters  at mid-span. 
Calculate P,, and Plb from the values in Section 2.2 of the worked  example. 

Mid-span  drop = drop  from  “elastic” + drop  from “plastic” 

= from 2.2.3 + from 2.3.3 + from 2.3.4 

)ate July 2001 

)ate July 2001 

A.5 
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= 153.2 + 1218 + 5.1 = 1376mm

Increase in P2 = 1I{[1(ôa /ha)1 — 1} = 1/{[1(1376/14660)] — 1} = 0.104

LH rafter:

Mid-span axial = 58.3, giving Pzl increase

P2 = 92.3 + 6.0 = 98.3 kN

RH rafter:

Mid-span axial = 58.6, giving Pzl increase

P2 = 92.5 + 6.1 = 98.6 kN

= 0.104x58.3

= 0.104x58.6

= 6.0 kN

=6.lkN

The energy summation is required to calculate 'M following the methods in
A.2.2

2.5 Second-order Energy Summation

ox'

A.2.2

°yl

Original
position

Deflected
position

O\2

0x2

1 23
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= 153.2 + 1218 + 5.1 = 1376 mm 

Increase in P2 = l/{[l-(d. /h31 - l} = 1/([1-(1376/14660)] - l }  = 0.104 

LH rafter: 

Mid-span  axial = 58.3, giving PA increase 

P2 = 92.3 + 6.0 = 98.3 kN 

RH rafter: 

Mid-span  axial = 58.6, giving PA increase 

P2 = 92.5 + 6.1 = 98.6 kN 

= 0.104x58.3 

= 0.104X58.6 

= 6.0 kN 

= 6.1 kN 

2.5 Second-order  Energy Summation 

Deflected 

The  energy  summation is required to calculate 2, following the methods in 
A.2.2 

)ate July 2001 

)ate July  2001 

A.2.2 
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Ite
Ite

July
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2001

Element for evaluation of Pc"phi"s"d(phi)

X-AXIS DEFLECTIONS
Deflections from the elastic" frame
dxa
dxb
(dxb - dxa)
Deflections from the "plastic" frame
From gravity loads
Sway of top of elastic column
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb
(dxb - dxa)
Column hinge horizontal displacement
dxa
dxb
(dxb - dxa)
From horizontal loads
Sway
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb

0.0 -830 3.8 0.0 90.8
-83.0 3 8 90 8 90.8 90 8
-83.0 86.8 87.0 90.8 0.0

5847 584.7 584.7 0.0
5847 584.7 584 7 584.7

0.0 0.0 0.0 584.7

00 527.5 1055.0 0.0
527.5 1055.0 1055.0 1055.0
527.5 527.5 0.0 1055.0

00 0.0 58.5 0.0
00 0.0 0.0 585
0.0 0.0 -58.5 58.5

0.0 5.4 54 54 0.0
5.4 5.4 5.4 5.4 54
5.4 0.0 0.0 0.0 5.4

0.0 0.0 25 5.1 0.0
0.0 2.5 5.1 5.1 5.1
0.0 2.5 2.5 0.0 5.1

AB BC CD bD Eb

00
584.7
584.7

00
0.0
0.0

0.0
00
0.0

(dxb - dxa)
ITotals of (dxb-dxa) at collapse

Y-AXIS DEFLECTIONS

507.1 616.9 617.0 32.3 1708.61

Deflections from the "elastic" frame
dya 0.0 0.5 153 2 0.5 0.0
dyb 0.5 153.2 0.5 0.5 0.5
(dyb - dya) 0.5 152.7 -152.7 0.0 0.5
Deflections from the "plastic" frame
Mid-span drop from gravity loads
dya 0.0 0.0 1218.2 0.0 0.0
dyb 0.0 1218.2 0.0 0.0 0.0
(dyb - dya) 0.0 1218.2 -1218.2 0.0 0.0
Deflections from the "plastic" frame
Mid-span drop from horizontal loads
dya 0.0 00 5 1 0.0 0.0
dyb 0.0 5.1 0.0 0.0 0.0
(dyb - dya) 0.0 5.1 -5.1 0.0 0.0
ITotal of (dyb - dya) at collapse 0.5 1375.9 -1375.9 0.0 0.51

psi (angle from X axis) 90.0 30.0 -300 90.0 90.0
[(dxb - dxa) at collapse]"Sin(psi) 507.1 308.4 -308.5 32.3 1708.6
[(dyb- dya)atcollapse]"Cos(psi) 0.0 1191.6 -1191.6 0.0 0.0
phi * sat collapse 507.1 1500.0 -1500.1 32.3 1708.6
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.579 0.579 3.032
IShortening = phi"s"d(phi) (modulus) 507,1 1500,0 868.1 18.7 5179.71

AXIAL FORCES
Pcfor columns and rafters at ULS 138.6 923 925 1392 139.2
Total midspan drop 1376.5 1376.5
Midspan height 14660 14660
Increase rafter midspan axial by (11(1-drop/height) - 1} 0.104 0.104
Midspan axial 58.3 58.6
Increase in rafter axial 6.0 6.1
Design axial 138.6 98.3 98.6 139.2 139.2

Sum = 1027llncremental energy = Pc"phi"s"d(phi) 70.3 147.4 85.6 2.6 721.01

WORK DONE IN ROTATING HINGES
Element for evaluating Mprd(phi) AB Ba aD bD Eb
MprA 0.0 0.0 402.5 452.1 0.0
MprB 00 402.5 0.0 0.0 452.1
MprA + MprB 0.0 402.5 402.5 452.1 452.1
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.579 0.579 3.032

Sum = 2268lMpr"dphi 0.0 402.5 232.9 261.6 1370.61

Factor on lambda_p 0.547
lambda p from first-order analysis 1.503
lambda M 0822
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CALCULATION SHEET 

Element  for  evaluation  of Pc'phi's'd(phi) 

X-AXIS DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dxa 
dxb 
(dxb - dxa) 
Deflections  from  the  "plastic"  frame 
From  gravity  loads 
Sway of  top of elastic  column 
dxa 
dxb 
(dxb - dxa) 
Spread 
dxa 
dxb 

Column  hinge  horizontal  displacement 
(dxb - dxa) 

dxa 
dxb 
(dxb - dxa) 
From  horizontal  loads 
Sway 
dxa 
dxb 
(dxb - dxa) 
Spread 
dxa 
dxb 

ITotals of  (dxb-dxa) at collapse 
(dxb - dxa) 

507.1 616.9 617.0 32.3 1708.61 
0.0 2.5 2.5 0.0 5.1 

Y-AXIS  DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dya 
dyb 
(dyb - dya) 
Deflections  from  the  "plastic"  frame 
Mid-span  drop  from  gravity  loads 
dYa 
dYb 

Deflections  from  the  "plastic"  frame 
Mid-span  drop  from  horizontal  loads 
dYa 
dyb 

- dya) 

0.0 

0.5 
0.5 

0.0 
0.0 
0.0 

0.0 
0.0 

0.5 

152.7 
153.2 

0.0 
1218.2 
1218.2 

00 
5.1 

153  2 

-152.7 
0.5 

1218.2 

-1218.2 
0.0 

51 
0.0 

0.5 
0.5 

0.0 

0.0 0.5 
0.5 

0.0 0.0 
0.0 0.0 
0.0 0.0 

0.0  0.0 
0.0 0.0 

dyb - dya) 0.0 5.1 -5.1 
Total of  (dyb - dya)  at  collapse 0.5 1375.9 -1375.9 0.0 0.51 

0.0 0.0 

psi (angle  from X axis) 
[(dxb - dxa) at collapse]*Sin(psi) 
[(dyb - dya) at collapse]'Cos(psi) 
Dhi * S at  collaDse 

507.1 308.4 -308.5 32.3 1708.6 
90.0 30.0 -30 0 90.0 90.0 

507.1 1500.0 -1500.1 32.3 1708.6 
0.0 1191.6 -1191.6 0.0 0.0 

IShortening = phi's'd(phi)  (modulus) 
Incremental rotn = d(phi) from mechanism 

507.1 1500.0 868.1 18.7 5179.71 
1.000 1.000 0.579 0.579 3.032 
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AB 

0.0 
-83.0 
-83.0 

0 0  
584.7 
584.7 

0 0  
0.0 
0.0 

0.0 
0 0  
0.0 

0.0 
5.4 
5.4 

0.0 
0 0  

BC  CD 

-83 0 3.8 

86.8 87.0 
38 908 

5847 564.7 
5847 584.7 
0.0 0.0 

0 0 527.5 
527.5 1055.0 
527.5 527.5 

00 0.0 
0 0  0.0 
0.0 0.0 

5.4 54 
5.4 
0.0  0.0 

5.4 

0.0 2 5  
2.5  5.1 

bD  Eb 

90.8 90 8 
0.0 90.8 

90.8 0.0 

584.7 0.0 
584  7 584.7 

0.0 584.7 

1055.0 0.0 
1055.0 1055.0 

0.0 1055.0 

58.5 
0.0 58  5 

0.0 

-58.5 58.5 

54 0.0 
5.4 54 
0.0 5.4 

5.1 0.0 
5.1 51 

AXIAL  FORCES 
Pc for columns and rafters at ULS 138.6 92 3 925 1392 139.2 
Total  midspan drop 
Midspan height 

1376.5  1376.5 
14660  14660 

Increase rafter  midspan axial by (l/(l-drop/height) - l} 0.104  0.104 
Midspan axial 58.3  58.6 
Increase  in  rafter axial 6.0 6.1 

llncremental  energy = Pc'phi's'd(phi) 
Design axial 138.6  98.3  98.6  139.2  139.2 

WORK  DONE  IN ROTATING HINGES 
Element for evaluating Mprd(phi) AB  Ba  aD  bD 
MprA 

Eb 
0.0 0.0 402.5  452.1 

MprB 
0.0 

MprA + MprB 
0 0 402.5 0.0 
0.0 402.5  402.5  452.1  452.1 

0.0 452.1 

70.3 147.4 85.6 2.6 721.01 Sum = 

[Mpr*d(phi) 
Incremental  rotn = d(phl) from mechanism 1.000  1.000  0.579  0.579  3.032 

0.0 402.5 232.9 261.6 1370.61 Sum = 

1027 

2268 

IFactor on lambda P i 0.5471 - 
lambda p from  first-order analysis 
lambda M 

I 1.503 
I 0.822 
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2.6 Load factor at failure, AM

P2 qsdq = 1027 q

2Mpr

P, ,b s d2 =21-M p EMdb

2M = 1.503 [i - ( )J
1.503x0.547 = 0.822

2M < 1.0, so the frame has failed the check for in-plane stability.

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The "hand" method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that 2 were closer to

1 25
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I 2.6 Load factor at failure, 

1027 4 A, = 1.503 [ 1 - ( 2268 ,)] = 1.503 X0.547 = 0.822 

A, < 1.0, so the frame  has  failed the check  for  in-plane  stability. 

The  above  shows how the second-order  effects have caused  a  major  reduction 
in capacity of the frame due to in-plane instability  effects.  The  “hand” method 
tends to be conservative, so analysis by another method might  demonstrate  that 
the reduction in capacity  is  not so great. 

The  analysis  above would be less  conservative if the stiffness of  the haunches 
had been included in all the stiffness  calculations. It would also be more 
economical if  the frame  were  proportioned so that A,  were  closer to Ap. 

~ 

l a t e  July 2001 
~~ 

l a t e  July 2001 
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1 INPUT FROM FIRST-ORDER ANALYSIS

1 .1 General Arrangement

x

15000

Angle of rafters: a'1 = a'2 = 8°

Span 50 m

25
Developed length of rafter, apex to eaves =

cos 8°
= 25.246 m

Height of column from base to Neutral Axis of rafter

127

= 15.Om

25000 25000

C,)

0)NN

254 x 254 x 73 UC

0
(0

Nominally pinned bases

S
C)
N
N
S
0
CD

50000
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Date July 2001 

1 INPUT  FROM FIRST-ORDER ANALYSIS 

1.1 General Arrangement 

25000 25000 

5 0  500 

I 50000 I 

Angle of rafters: a, = a2 = 8" 

Span = 50 m 

25 
Developed length of rafter,  apex to eaves = ~ 

cos 8" 

Height of column  from base to Neutral Axis of rafter 

= 25.246 m 

= 15.0 m 
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12 Loadingwwww
NHF NHF

Frame spacing = 8 m

Dead = 0.100 x 8.000 x 1.4 = 1.12 kN/m along slope
Service = 0.150 x 8.000 x 1.4 = 1.68 on plan
Imposed = 0.600 x 8.000 x 1.6 = 7.68 on plan
Self Weight= 113 x 102 x 1.000 x 1.4 = 1.58 along slope

Taking Notional Horizontal Forces as 0.5% of the column base reactions Clause 2.4.2.4

Required NHF = 0.005 x 650 kN = 3.25 kN

ULS loads on plan = 1.68 + 7.68 = 9.36 kN/m

ULS loads on slope = 1.58 + 1.12 = 2.70 kN/m

ULS load transverse to slope = 9.36 Cos28 + 2.70 Cos8° = 11.85 kN/m

1 28
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1.2 Loading 

NHF 3. NHF 

* * 
Frame  spacing = 8 m 

Dead = 0.100 X 8.000 X 1.4 = 1.12  kN/m along slope 
Service = 0.150 x 8.000 x 1.4 = 1.68  on  plan 
Imposed = 0.600 X 8.000 X 1.6 = 7.68 on plan 
Self  Weight = 113 X 10 * X 1.000 X 1.4 = 1.58  along slope 

Taking Notional Horizontal  Forces  as 0.5% of the column base reactions 

:. Required NHF = 0.005 x 650 kN = 3.25 kN 

ULS  loads on plan = 1.68 + 7.68 = 9.36 kN/m 

ULS loads on slope = 1.58 + 1.12 = 2.70 kN/m 

ULS load transverse  to  slope = 9.36  Cos28" + 2.70  Cos8" = 11.85  kN/m 

l a t e  July 2001 

l a t e  July 2001 

Clause 2.4.2.4 
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1 .3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate the
collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is not
necessary to repeat the calculation of the collapse factor by the Rigid-Plastic
method.

Failure Mechanism

—----- ------
7

9 17 ___

G

D

C

1 29
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1.3 Hinge incremental Rotations 

The values of incremental rotation of  the hinges are taken from the first-order 
collapse mechanism.  These are the incremental rotations as  used to calculate the 
collapse factor of the frame using the classic Rigid-Plastic (Virtual Work) 
method. 

The  second-order analysis uses  the relative magnitude of  the instantaneous 
rotations, so the absolute magnitude of each rotation does not affect the 
calculations. 

Where the analysis has been  performed by methods other than the Rigid-Plastic 
method (e.g. by the Semi-Graphical  method), the incremental rotations can  be 
deduced from the geometry of  the frame and  the position of  the hinges. It  is not 
necessary to repeat the calculation of the collapse factor by the Rigid-Plastic 
method. 

Failure Mechanism 

C 
B 

E 
F 

*h G 

)ate July 2001 
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Find Node Locations

Pt A: (0.0, 0.0)

Pt B: (0.0, 14.2)

Pt C: (0.0, 15.0)

Pt D: (25.0, {15.0 + 25.0 Tan 8})

Pt E: (50.0, 15.0)

Pt F: (50.0, 14.2)

Pt G: (50.0, 0.0)

Pt a: ({9.170 Cos 8}, {15.0 + 9.170 Sin 8})

Pt b: ({50 - 24.700 Cos 8}, {15 — 24.700 Sin8})

Pt c: ({50 4.000 Cos 8}, {15 + 4.000 Sin 8})

Member Rotations

= 0

— 0

= (0.0, 0.0)

= (0.0, 14.2)

= (0.0, 15.0)

= (25.0, 18.514)

= (50.0, 15.0)

= (50.0, 14.2)

= (50.0, 0.0)

= (9.081, 16.276)

= (25.540, 18.438)

= (46.039, 15.557)
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RotationABC

RotationEFG

I,
I,
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Job Title BS 5950  Portals 

Subject Second-order  Worked  Example: 
Tied  Portal  Frame 

Client DETR Made  by CMK 

Checked by WIS 

Find Node Locations 

Pt A: (0.0, 0.0) 

Pt B: (0.0, 14.2) 

Pt C: (0.0, 15.0) 

Pt D: (25.0,  (15.0 + 25.0 Tan 8)) 

Pt E: (50.0, 15.0) 

Pt F: (50.0, 14.2) 

Pt G: (50.0, 0.0) 

Pt  a: ((9.170 Cos S) ,  (15.0 + 9.170 Sin 8)) 

Pt b: ((50 ~ 24.700 Cos S}, { 15 - 24.700  Sin8)) 

Pt c:  ((50 - 4.000 Cos S},  (15 + 4.000  Sin S}) 

Member Rotations 

Rotation,,, = e  

Rotation,,, = e  

I 
I 
I 
I 
I 

B 
I 
I 
I 
I 

I 

= (0.0, 0.0) 

= (0.0, 14.2) 

= (0.0, 15.0) 

(25.0,  18.514) 

(50.0, 15.0) 

(50.0, 14.2) 

(50.0, 0.0) 

(9.081,  16.276) 

(25.540,  18.438) 

(46.039,  15.557) 

1 m 

)ate July 2001 
~~~ ~ 

)ate July 2001 
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Find slope beta, /3, of ac from horizontal

/3 = Tan'(Y-Ya)/(Xc—Xa) = Taif'(15.557 - 16.276)/(46.039 - 9.081)

= -1.12°

Shortening of ac = dXac Cos /3 + dYac Sin /3

= [(Y, - YA)O - (Y - Y0)0]Cos/3 + [(Xa - XA)8 - (X - XG)O] Sin/3

= (16.2768— 15.5578) Cos/3 +(9.0810- (-3.961)8) Sin/i

= (0.7200) 0.9998 + (13.0420)0.0195 = 0.9730

Find slope gamma, y, of ab from horizontal

y Tan'(Yt,—Ya)/(Xb-Xa) = Tan'(18.438 - 16.276)1(25.540 - 9.081)

= 7.48°

gamma - beta = 7.48 - (- 1.12) = 8.60°

Slope delta, ô, of cb

ô = Tan'[(Yb — Y)/(X - Xb)]

= Tan'(18.438 - 15.557)1(46.039 - 25.540)= 8.00°

Angle L = gamma + delta = 7.48 + 8.00 = 15.48°

Angle M = 90 - (gamma - beta) = 90 - 8.60 = 81.40°

Angle N = 90 - (delta + beta) = 90 - (8.0 - 1.12) = 83.12°

SinL/l = SinM/m = SinNln

1 = shortening of ac = 0.9738

m 1(SinMISinL) = 0.9730(Sin8l.40°/Sinl5.48°) = 3.610

n l(SinNISinL) = 0.973 8(Sin83.12°/SinlS.48°) = 3.62 0

length ab = [(Yb ) + (Xb - Xa)2]"2 = 16.601

Rotation of ba = n /(length ab) = 3.620/16.601 = 0.2188
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Find  slope  beta, p, of ac  from  horizontal 

p = T~-'(Y,-Y,)/(X,-X,) = Tan-'(15.557 - 16.276)/(46.039 - 9.081) 

= -1.12" 

Shortening of ac = dX,, Cos p + dY, Sin p 

= [(Ya - Y,)B - ( K  - YG)8]Cos/3 + [(X, - X,)@ - (X, - X,)B] Sin p 

= (16.2768 - 15.5578)  Cosp  +(9.0818 - (-3.961)8) S inp  

= (0.7208) 0.9998 + (13.0428)0.0195 = 0.9738 

Find  slope  gamma, y, of  ab  from  horizontal 

y = Tan-'(Y,-Y,)/(X,-X,) = TaK'(18.438 - 16.276)/(25.540 - 9.081) 

= 7.48" 

gamma - beta = 7.48 - (- 1.12) = 8.60" 

Slope  delta, 6, of cb 

6 = Tan-'[(& - Y,)/(X, - x,)] 

= Tan-'(18.438 - 15.557)/(46.039 - 25.540)= 8.00" 

Angle L = gamma + delta = 7.48 + 8.00 = 15.48" 

Angle M = 90 - (gamma - beta) = 90 - 8.60 = 81.40" 

Angle N = 90 - (delta + beta) = 90 - (8.0 - 1.12) = 83.12" 

SinLJI = SinM/m = SinN/n 

l = shortening of ac = 0 . 9 7 3 ~  

m = l(SinM/SinL) = 0.9738(Sin81.40"/Sinl5.48") = 3.618 

rz = I(SinZV/SinL) = 0.973  B(Sin83.12"/Sin15.48") = 3.62 8 

length ab = [(Y, - Y,)' + (X, - X,)2]''2 = 16.601 

Rotation of  ba = n/(length ab) = 3.628/16.601 = 0.2188 

)ate July 2001 

)ate July  2001 
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length bc = [(Ye
- Yb)2 + (X - Xb)2]2 = 20.700

Rotation of bc = in/(length bc) = 3.618/20.700 = 0.1748

1 .4 Axial forces at ULS from first-order analysis

The analysis is not sensitive to the accuracy of the axial forces. Therefore the
axial forces may be calculated by elastic analysis, plastic analysis (factored down
from collapse to ULS) or elastic-plastic analysis.

LH column: at base = 324 kN, at haunch = 302 kN

LII rafter: at column = 960 kN, at apex = 919 kN

RH rafter: at column = 960 kN, at apex = 919 kN

LII column: at base = 326 kN, at haunch = 302 kN

1 .5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force. These may be taken from section tables.

610x229x 113 UB = p S = 265 >< 3280 x i0 = 869 kNm Annex 1.2.

1 .6 Load factor at formation of the first hinge, A1

From the frame analysis output, the load factor at the formation of the first
hinge is:

2, = 2.12

1 .7 Plastic collapse factor, A.

From the frame analysis, the plastic collapse factor calculated by first-order
analysis is:

= 2.28
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length bc = [(Y, - Yb)2 + (X ,  - = 20.700 

Rotation of bc = m/(length bc) = 3.618/20.700 = 0.1740 

1.4 Axial forces at ULS  from first-order  analysis 

The  analysis is not sensitive to the accuracy of  the axial forces.  Therefore the 
axial  forces may be calculated by elastic analysis, plastic analysis (factored down 
from  collapse  to ULS) or elastic-plastic analysis. 

LH column:  at base = 324 kN,  at haunch = 302 kN 

LH  rafter:  at  column = 960 kN, at  apex = 919 kN 

RH  rafter:  at column = 960 k N ,  at apex = 919 kN 

LH column: at base = 326 kN,  at haunch = 302 kN 

1.5 Reduced Plastic Moments  at ULS from first-order  analysis 

Use the reduced moment capacity for the sections to account for the co-existent 
axial force. These may  be taken from section tables. 

6 1 0 x 2 2 9 ~  113 UB M,, = pr S,, = 265 x 3280 x = 869 kNm 

1.6 Load factor at formation of the first  hinge, h, 

From the frame analysis output, the load factor at the formation of the first 
hinge is: 

A, = 2.12 

1.7 Plastic  collapse factor, h, 

From the frame  analysis, the plastic collapse factor calculated by first-order 
analysis  is: 

Ap = 2.28 

)ate July 2001 

)ate July 2001 

Annex 1.2. 
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1 .8 Member inertias, l

LH column: 610x229x 113 UB: 4 = 87300 cm4

LH rafter: 610x229x 113 UB: 4 = 87300 cm4

RH rafter: as LH rafter

RH column: as LH column

1.9 Deflections of frame at A1 (formation of the first hinge)

The deflections are found from first order elastic or elastic-plastic analysis.

ôxB
= 22.1 mm = 3.2 mm

= 30.3 mm = 3.3 mm

ox0 = 49.1 mm = 252.9mm

= 67.9 mm
0YE

= 3.3 mm

0xF = 73.0mm 0yF
= 3.2mm

2 SECOND-ORDER ANALYSIS

2.1 Axial force in members

The axial force in the members is calculated from the first-order analysis output.
The values are taken as the mean of the axial force at the ends of the member
where there is no major step in the axial force. Where there is a major step in
the axial force, eg at the end of a tie in a tied rafter or at the underside of a
crane bracket on a column, the value should be taken as the mean of the ends of
the most highly loaded segment, e.g. between the ends of a tie and the apex in a
tied rafter.

LH col: take mid-height uLs = (324 + 302)/2 = 313 kN

LH rafter: take mid-length ULS = (960 + 919)12 = 940 kN
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1.8 Member inertias, I, 

LH column: 610X229x113 UB: Zx = 87300 cm4 

LH  rafter: 6 1 0 ~ 2 2 9 ~ 1 1 3  UB: Zx = 87300 cm4 

RH rafter:  as LH rafter 

RH column: as  LH column 

1.9 Deflections of frame at A, (formation of the first hinge) 

The  deflections are found from  first  order elastic or elastic-plastic analysis. 

- - 22.1 mm 

- 30.3 mm 

- 49.1 mm 

- 67.9 mm 

- 73.0 mm 

*YB 

*K 
*Y D 

*YE 

*,F 

- 

- 

- 

- 

SECOND-ORDER ANALYSIS 

Axial  force in members 

- - 3.2 mm 

- 3.3 mm 

- 252.9 mm 

- 3.3 mm 

- 3.2 mm 

- 

- 

- 

- 

The axial force in the members  is calculated from the first-order analysis output. 
The values are taken as the mean of  the axial force  at the ends of  the member 
where there  is no major  step in  the axial force.  Where  there  is a major step in 
:he axial force,  eg  at the end of a tie in a tied rafter or  at the underside of a 
xane bracket on a column, the value should be taken as the mean of the ends of 
:he most highly loaded segment,  e.g. between the ends of a tie and the apex in a 
:ied rafter. 

LH col: take mid-height PuLs = (324 + 302)/2 = 313 kN 

rafter: take mid-length PuLs = (960 + 919)/2 = 940 kN 

l a te  July 2001 

)ate July 2001 
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RH rafter: take mid-length uLS = (960 + 9 19)72 = 940 kN

RH col: take mid-height IILS = (326 + 302)72 = 314 kN

2.2 Bending deflections of the "elastic" frame B.3

2.2.1 Stiffness reduction factors allowing for P.O effects B.3.2

LH column:

I.. = 87300 cm4, Ii = 15000mm, a = 1.7 for nominally pinned bases

= rt2EI/(cth)2 = it2x205000x87300x104/(1.7x15000)2 = 2716 kN

ULS = 313 kN

Stiffness reduction factor (1—P1JLS/PCf) = 1 — 313/2716 = 0.885

RH column:

1cr = as LH column

ULS = 314kN

Stiffness reduction factor (1—PrJLS/PCF) = 1
— 314/2716 = 0.884

LH rafter:

I,, = 87300 cm4, L = 25246mm, a' = 1.0

Pcr = TC2EI/(aL)2 = 7c2x205000x87300x104/(1.0x25246)2 2771 kN

ULS = 940 kN

Stiffness reduction factor (l—PtJLs'P) = 1 — 940/2771 = 0.661

RH rafter:

1cr = as LI-I rafter

1ULS 940 kN

Stiffness reduction factor (lPtJLS/Pcr) = 1 — 940/2771 = 0.661
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RH rafter: take mid-length P,,, = (960 + 919)/2 = 940 kN 

RH col: take mid-height PcJLs = (326 + 302)/2 = 314 kN 

2.2 Bending deflections of the “elastic” frame 

2.2.1 Stiffness reduction factors allowing for P.6 effects 

LH column: 

1, = 87300  cm4, h = 15000mm, a = 1.7 for nominally  pinned bases 

Pcr = x2EZ/(&)’ = .rr;’~205000~87300X lO4/(l.7X150O0)’ = 2716 kN 

P,,, = 313 kN 

Stiffness reduction factor (1- P,,,,/PCr) = 1 - 313/2716 = 0.885 

RH column: 

Pcr = as LH column 

PuLs = 314  kN 

Stiffness reduction factor (1 - PULS/Pcr) = 1 - 314/2716 = 0.884 

LH rafter: 

I, = 87300  cm4, L = 25246mm, a = 1.0 

Pcr = x2EZ/(aL)’ = X’ x 205000 X 87300 x lo4/( 1 .O x 25246)’ = 2771 kN 

PrJLs=  940 kN 

Stiffness reduction factor ( 1  - PULS/Pcr) = 1 - 940/2771 = 0.661 

RH rafter: 

PC, = as LH rafter 

P,,,, = 940 kN 

Stiffness reduction factor (l-PuL,/Pcr) = 1 - 940/2771 = 0.661 

)ate July 2001 

)ate July 2001 

B.3 

B.3.2 

134 



Construction
The Steel

Institute

Job No: CDS 139 I1e 9 of 23 A

Job Title BS 5950 Portals

Subject Second-order Worked Example:
Sliwood Park, Ascot, Berks SL5 7QN Tied Portal Frame
Telephone: 1013441 623345
Fax: 101344) 622944

CALCULATION SHEET

Client DETR IM& by CMK

by WIS

Date

Date

July

July

2001

2001

2.2.2 Second-order magnification factors B.3.3

Sway mode magnification factor krii"Ocri - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness:

K = 1 D.2.5
2

Sh2 h3

3EIffR
+

3EIff

Sway stiffness from base stiffness:

1 D.4
b

5h3 h3

2EI
+

3EICff c

LH rafter and column:

Rafter : 'effR = jx(1ULS11cr) = 87300x0.661 = 57705 cm4

Column : = Ix(1PULS/PCr) = 87300x0.885 = 77241 cm4

1

25246 (15000)2 + (15000)
3x205000x57705x104 3x205000x77241x104

= 1/(0.01601 + 0.00711) = 1/0.02311 = 43.3 N/mm

Kh=
1

5 (15000? + (l5000)
2x205000x87300x104 3x205000x77241x104

= 11(0.04715 + 0.00711) = 1/0.054 = 18.4 N/mm

RH rafter and column:

Rafter : = Ix(1PIjLS/PCr) = 87300x0.661 = 57705 cm4

Column : = 1(1 'L1LS'cr) = 87300 xO.884 = 77208 cm4
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2.2.2 Second-order  magnification  factors 

Sway mode magnification factor Acrl/(Acrl - 1) 

The notional sway deflection is calculated from the sum of the stiffnesses K for 
each of the column  and rafter pairs: 

Sway stiffness from  column and rafter stiffness: 

1 
S h 2   h 3  

K, = 

[-+-l 3EIeff.R  3EIeff.c 

Sway stiffness from base stiffness: 

1 Kb = 

LH rafter and column: 

Rafter : Ieff.R = Ix(l-PuLs/Pcr) = 87300~0.661 = 57705  cm4 

Column : Ieff,c = Ix(l-PuLs/Pcr) = 87300~0.885 = 77241  cm4 

1 K, = . 

25246 (1 5000), + ( 15000)3 
3 X 205000 X 57705 X lo4 3 X 205000 X 77241 X lo4 

= 1/(0.01601 + 0.00711) = 1/0.02311 = 43.3  N/mm 

1 

5 ( 15000)3 + ( 15000)3 
2 X 205000 X 87300 X lo4 3 X 205000 X77241 X lo4 I 

= 1/(0.04715 + 0.00711) = 1/0.054 = 18.4  N/mm 

RH rafter and column: 

Rafter : leff.R = Ix(l ~ P,,Ls/Pcr) = 87300 x0.661 = 57705  cm4 

Gdumn : Ieff,c = I,( 1 -PuLs/Pcr) = 87300 x0.884 = 77208  cm4 

l a t e  July 2001 

l a te  July 2001 

B.3.3 

D.2.5 

D.4 
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K2=
1

25246 (15000)2 + (15000)
3x205000x57705x104 3x205000x77208x104

= 1/(0.01601 + 0.00711) = 1/0.02311 = 43.3 N/mm

1

5 (15000) + (15000)
2x205000x87300x iO 3x205000x77241 x i04j

= 17(0.04715 + 0.00711) = 1/0.054 = 18.4 N/mm

Total frame:

= 43.3 + 18.4 + 43.3 + 18.4 = 123.4 N/mm

H = 0.005 x [Sum of the column reactions]

= 0.005x(650) = 3.25 kN

= EH/ K = 3250/123.4 = 26.3 mm

= h/200ó7 = 15000/(200 x 26.3) = 2.85

Sway mode magnification factor A1/(A1 - 1) = 2.857(2.85 - 1)= 1.54

Symmetrical mode magnification

The symmetrical mode magnification is taken as the magnification arising from
using the effective inertia 'eff = 1(1 PJLS/Pcr) of the members.

2.2.3 Deflection calculations B.3.4

Sway deflections D .2.3

The first-order sway deflection ôX1 is calculated from the sum of the stiffnesses
K for each of the column and rafter pairs. (The base stiffness of nominally
pinned bases is not included because this is not a stability calculation like the
calculation of 2cr)

1 36

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

Tied Portal Frame 

Client DETR Made  by CMK 
CALCULATION SHEET I Checked by WIS 

The  Steel 
Construction 
Institute 

- 

- 

K 2 =  i 
1 

25246 (15000)* i ( 15000)3 
3 x 205000 x 57705 x lo4 3 x 205000 x 77208 x lo4 

= 1/(0.01601 + 0.00711) = U0.02311 = 43.3 N/mm 

1 

5 (15000)3 + ( 15000)3 
2X205000X87300X  lo4  3X205000X77241 X lo4 I 

= 1/(0.04715 + 0.00711) = 1/0.054 = 18.4  N/mm 

Total frame: 

EK = 43.3 + 18.4 + 43.3 + 18.4 = 123.4  N/mm 

H = 0.005 X [Sum  of  the column reactions] 

= 0.005 X (650) = 3.25 kN 

= EH/E K = 3250/123.4 = 26.3  mm 

Acrl = h/200& = 15000/(200 x 26.3) = 2.85 

Sway  mode magnification factor Acrl/(Acrl - 1) = 2.85/(2.85 - l ) =  1.54 

Symmetrical mode  magnification 

The symmetrical mode magnification is taken as the magnification arising from 
using the effective inertia Zeff = Z ( l  - P,,Ls/Pc,.) of  the members. 

2.2.3 Deflection calculations 

Sway deflections 

The first-order sway deflection JX,, is calculated from the sum of  the stiffnesses 
K for  each of  the column and rafter pairs.  (The base stiffness of nominally 
pinned  bases  is not included because this is not a stability calculation like  the 
calculation of ,lcr) 

)ate July 2001 

)ate July 2001 
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K= 1

Sh2 h3

3EZR

+

LH rafter and column:

Rafter : = 87300 cm4

Column : 1, = 87300 cm4

K= 1

25246 (15000)2 + (15000)
3x205000x87300x104 3x205000x87300x104

= 1/(0.01058 + 0.00629) = 1/0.01687 = 59.3 N/mm

RH rafter and column:

As LH rafter and column

Total frame:

First-order sway deflections:

= 59.3 + 59.3 = 118.6 N/mm

H = A x HULS = 2.12 x 3.25 = 6.89 kN

= EH/2K = 6890/118.6 = 58.1 mm

ôX1=J =58.1mm

Second-order deflections

ôX2 (oX1 — OX) + OXis{Acri/(Acr1 — 1)} B.3.4

OX5 = (22.1 - 58.1) + 58.1{1.54} = 35.1 mm

OX = (30.3 - 58.1) + 58.1{1.54} = 47.5 mm

OX14 = (49.1 - 58.1) + 58.1{1.54} = 75.9mm
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K =  1 

LH rafter and column: 

Rafter : ZR = 87300 cm4 

Column : I ,  = 87300  cm4 

25246 (1 5000)* + ( 15000)3 
3 x 205000 x 87300 x lo4 3 x 205000 x 87300 x lo4 

= 1/(0.01058 + 0.00629) = 1/0.01687 = 59.3  Nlmm 

RH rafter and  column: 

As LH rafter  and  column 

Total frame: 

First-order sway deflections: 

2 K  = 59.3 + 59.3 = 118.6 N1mm 

H = A, x I f U L S  = 2.12 X 3.25 = 6.89 kN 

A = 2 I f / Z K  = 68901118.6 = 58.1 mm 

sX,,= A = 58.1 mm 

Second-order deflections 

a*= (8x1 - m,,) + ~ls{Acrll(Jcr,  - 1)) 

SX, = (22.1 - 58.1) + 58.1{1.54} = 35.1  mm 

SX, = (30.3 - 58.1) + %.l{ 1.54) = 47.5  mm 

SX,, = (49.1 - 58.1) + 58.1{1.54) = 75.9 mm 

)ate July 2001 

)ate July 2001 
1 

B.3.4 
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ÔXE = (67.9 58.1) + 58.1{1.54} = 104.4mm

ÔXF = (73.0 — 58.1) + 58.1{1.54} = 112.1 mm

The hinges at "b" and "c" are so close to points D and E that the deflections at
the hinges can be assumed to be at the same points. The effect on the Energy
summation is insignificant.

Deflection at point where hinge "a" occurs

In the absence of more detailed analysis, the deflection at hinge "a" may be

taken as the mid-span deflection of the section of the rafter between the haunch
to the apex. The bending moment at the ends of this segment of rafter may be
assumed to be wL2/16 hogging, which gives the midspan bending moment equal
to wL2/16 sagging.

At , , load transverse to slope = 2.12 x 11.85 = 25.13 kN/m

2 wL4 2 25.13(21610)Deflection = = _________________ = 223.8 mm
384 EIff 384 205000x57705x i04

Vertical deflection = 223.8 Cos 8° = 221.6 mm

Horizontal deflection = 223.8 Sin 8° = 31.1 mm

The total deflection of "a" is taken as the mean deflection of C and D plus the
deflection calculated above:

= (oX0 + OX0)12 + 31.1 = (47.5 + 75.9)72 + 31.1 = 92.9mm

2.3 Bending deflections of the "plastic" frame B.4

2.3.1 Stiffness reduction factors to allow for P.O effects B.4.2

LH column:

As "elastic" frame, stiffness reduction factor ('PtJLS/Pcr) = 0.885

RH column:

As "elastic" frame, stiffness reduction factor (1PULS/Pcr) = 0.884
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SX, = (67.9 - 58.1) + 58.1i1.54) = 104.4 mm 

SX, = (73.0 - 58.1) + 58.1{1.54} = 112.1 mm 

The  hinges at  “b” and “c” are so close to points D and E that the deflections at 
the hinges can be assumed to be at the same  points.  The  effect  on the Energy 
summation is insignificant. 

Deflection at  point  where  hinge “a” occurs 

In the absence of more detailed analysis, the deflection  at hinge “a” may  be 
taken  as the mid-span deflection of the section of the rafter  between the haunch 
to the apex.  The bending moment at the ends of this segment of rafter may  be 
assumed  to  be wL2/16 hogging, which gives the midspan bending moment  equal 
to wL‘l16 sagging. 

At A ,  , load  transverse  to  slope = 2.12 X 11.85 = 25.13  kN/m 

Vertical  deflection = 223.8 Cos 8 O = 221.6 mm 

Horizontal  deflection = 223.8 Sin 8”  = 31.1 mm 

The total deflection of “a” is taken as the mean deflection of C and D plus the 
deflection  calculated  above: 

d Y a  = (SX, + SXD)/2 + 31.1 = (47.5 + 75.9)/2 + 31.1 = 92.9 mm 

2.3 Bending deflections of the “plastic” frame 

2.3.1 Stiffness reduction factors to allow for P.6 effects 

LH column: 

As “elastic”  frame, stiffness reduction factor (l-PLJLs/PJ = 0.885 

RH column: 

As “elastic”  frame, stiffness reduction factor (l-PuLs/Pcr) = 0.884 

)ate July 2001 

)ate July 2001 

B.4  

B.4.2 
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LH rafter:

As "elastic" frame, stiffness reduction factor (1PjPr) = 0.661

RH rafter:

The RH rafter has a plastic hinge at each, so the stiffness value is zero.

2.3.2 Second-order magnification factors B.4.3

Sway mode magnification factor 'crp/O'crp - 1)

The notional sway deflection is calculated from the sum of the stiffnesses K of
the LH column and rafter pair (the RH rafter is hinged at each end reducing the
stiffness to zero) and the LH and RH base stiffness:

Sway stiffness from column and rafter stiffness:

K = I D.3.5
2

Sh2 ____
3EIeffR

+

Sway stiffness from base stiffness:

K= I D.4
b

+

C

LH rafter and column:

K2 and Kb are the same as for the "elastic" frame.

RH rafter and column:

Kb is the same as for the "elastic" frame. K, is zero because the rafter is hinged
at both ends.

Total frame:

= 43.3 + 18.4 + 0 + 18.4 = 80.1 N/mm

H = 3.25 kN as calculated above
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LH  rafter: 

1 As “elastic”  frame,  stiffness  reduction  factor (l-Puu/Pcr) = 0.661 

RH rafter: 

The  RH  rafter  has  a  plastic hinge at  each, so the stiffness value is  zero. 

2.3.2 Second-order magnification factors 

Sway mode magnification  factor herpl(Acrp - 1) 

The  notional sway deflection is calculated  from the sum of  the stiffnesses K of 
the LH column  and  rafter  pair  (the RH rafter  is  hinged  at  each  end  reducing the 
stiffness  to  zero)  and the LH and RH base stiffness: 

Sway stiffness  from  column and rafter  stiffness: 

1 K2 = 
S h 2  

Sway stiffness  from base stiffness: 

1 

2E4 3E4ff.c 

LH rafter and column: 

K2 and Kb are the same  as  for the “elastic”  frame. 

RH rafter and column: 

K,, is the same as for the “elastic”  frame. K2 is  zero because the rafter  is  hinged 
at  both  ends. 

Total  frame: 

EK = 43.3 + 18.4 + 0 + 18.4 = 80.1 N/mm 

H = 3.25 kN as calculated  above 

l a te  July 2001 

)ate July 2001 

B.4.3 

D.3.5 

D.4 
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= H/K 3250/80.1 = 40.6 mm

= h/200ô = 15000/(200 x 40.6) = 1.85

Sway mode magnification factor A/(A — 1) = 1.85/(1.85 — 1) = 2.18

2.3.3 Deflections from vertical loads B.4.5

The loads applied to the "plastic" frame = (A,,
- ,1)(loads at ULS)

- A) = (2.28 - 2.12) = 0.16

wp = 0.16(9.36Cos28° + 2.7OCos8°) = 1.90 kN/m

Sway

This arises due to the rotation of the column without an adjacent hinge caused by
the end rotation of the rafter spalming from eaves to apex.

wS3 A
End slope of the rafter, °R2 =

24 EIR 'crp 1

3.03 x 25246
°R2 = 2.18 = 0.0155 radians24 x 205000 x 87300 x io

Horizontal deflection of eaves = hOR = 15000 x 0.0155 = 232.1 mm

Horizontal deflection of tie = 14200 x 0.0155 = 219.7 mm

Drop of mid-rafter hinge "a"

s w S4 Acrp
Midspan deflection of the rafter, ôR2 = iI E A - 1R crp

5 1.7 x 25246
ÔR2 = 2.18 = 122.1 mm

384 205000 x 87300 x i04

X deflection = ôR2 Sin t = 122.1 x0. 139 = 17.0 mm

Y deflection = ôR2 Cos a'= 122.1 xO.990 = 120.9 mm
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A = E:H/Z:K = 3250B0.1 = 40.6 mm 

ACT = h/2006", = 15000/(200 X 40.6) = 1.85 

Sway  mode magnification factor AcT/(Acrp - 1) = l . w ( l . 8 5  - 1) = 2.18 

2.3.3 Deflections  from vertical loads 

The loads applied to the "plastic" frame = (A, - A,)(loads at ULS) 

(Ap - A,) (2.28 - 2.12) = 0.16 

W P  = O.16(9.36Cos28" + 2.7OCos8") = 1.90  kN/m 

Sway 

This  arises  due to the rotation of  the column without an adjacent hinge caused by 
the end rotation of the rafter spanning  from eaves to apex. 

wP s3 a c r p  
End slope of the rafter, = -- 24 EIR 3LCrp- l 

3.03 x 252463 
24 x 205000 x 87300 x lo4 

= 2.18 = 0.0155 radians 

Horizontal deflection of eaves = he, = 15000 X 0.0155 = 232.1 mm 

Horizontal deflection of tie = 14200 X 0.0155 = 219.7 mm 

Drop of mid-rafter hinge  "a" 

5 wP s4 * u p  
Midspan deflection of  the rafter, 4, = - - ~ 

384 E IR 3LCrp- 1 

5 1.7 x 252464 "' = 
384 205000 X 87300 X lo4 

2-18 = 122.1 mm 

X deflection = S,, Sin a = 122.  l xO.  139 = 17.0 mm 

Y deflection = S,, Cos a= 122. l x0.990 = 120.9 mm 

)ate July 2001 

)ate July 2001 

B.4.5 

1 40 
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2.3.4 Deflections from horizontal loads B.4.6

The loads applied to the "plastic" frame = (A - A1)(loads at ULS)

(A,, A) — (2.28 2.12) = 0.16

The ULS horizontal load in this load case is the notional horizontal force

H = (A -
A1) x NHF = 0.160 x 3.25 = 0.52 kN

The sway deflection is calculated from the sum of the stiffnesses K of the LH
column and rafter pair (the RH rafter is hinged at each end reducing the stiffness
to zero). The base stiffness of nominally pinned bases is not included because
this is not a stability calculation like the calculation of Acr.

K= 1 1

S/i2 'crp

3EIR 3EI ?crp
— 1

The first-order stiffness of the LH rafter and column pair is the same as for the

"elastic" frame:

1

S/i2 /i3

3EJR

+

= 59.3 x (1/2.18) = 27.2 N/mm

Sway deflection = 520/27.2 = 19.1 mm

Drop of mid-rafter hinge at "a"

The sway deflection induces an additional deflection at the hinge point "a"

MS2 A
m2 =

16 EIR Acrp 1
where M = H1 h = 520 x 15000 = 7.8 kNm

7.8x 106 x252462
ôsm2

= )< 2.18 = 3.8 mm
16x205000x87300xiO

X deflection = ôSm2 Sina = 3.8 x 0.139 = 0.5 mm
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2.3.4 Deflections from horizontal loads 

The loads applied to  the “plastic” frame = (A, - A,)(loads at ULS) 

(Ap - A , )  (2.28 - 2.12) = 0.16 

The ULS horizontal load in this load case is the notional horizontal force 

H = (Ap - A, )  X NHF = 0.160 X 3.25 = 0.52 kN 

The sway deflection is calculated from the sum of the stiffnesses K of the LH 
column  and  rafter  pair (the RH rafter is  hinged  at each  end reducing the stiffness 
to zero).  The base stiffness of nominally pinned bases is not included because 
this is not a stability calculation like  the calculation of Acr. 

The  first-order stiffness of the LH rafter and  column  pair is the same as for the 
“elastic”  frame: 

1 
= 59.3 

S h 2  

K,  = 59.3 X (1/2.18) = 27.2 N/mm 

Sway deflection = 520/27.2 = 19.1 mm 

Drop of mid-rafter hinge at “a” 

The sway deflection induces an additional deflection at the hinge point “a” 

7 . 8 ~  106x25246’ 

16 X 205000 X 87300 X lo4 *m2 = x 2.18 = 3.8 mm 

X deflection = dSm2 Sina = 3.8 X 0.139 = 0.5 mm 

)ate July 2001 
~ 

)ate July 2001 

B.4.6 
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Y deflection = ô2 Cosa' = 3.8 x 0.990 = 3.7 mm

2.4 Apex drop B.5

Apex drop from the first-order elastic deflections B .5.2

Ydeflection at A, ô1 = 252.9mm

Apex drop at ULS, 5ULS = ô1 / A1 = 252.9/2.12 = 119.3 mm

Apex drop from curvature shortening ô B.5.3

Rafter transverse deflections at ULS:

ULS transverse load on rafters = 11.85 kN/m

2 wS4
Take total transverse deflection = ô = _____

cs2 384 El
eff,R

2 11.85x(21610)4= ___________ = 105.6mm
384 205000 x 57705 X i04

7t2(ô 2) m2(1O5 6l2
Taking shortening = CS = ________ = 1.3 mm

4Sr 4x21610

Apex drop = 1.3/Sin 8° = 9.3 mm

Calculate the apex drop from increased rafter axial force B.5.4

(i) Vertical component of rafter axial, V1

= R1 Sina = 919 Sin8° = 127.9 kN

(ii) Reduced slope

Drop from first-order + curvature, d1 = ô1 + d/Sina'

= 119.3 + 1.3/Sin 8° = 119.3 + 9.3 = 128.6mm

Sr = (25000 - 4000)/Cos8° = 21400/Cos8° = 21610

142
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Subject Second-order  Worked  Example: 

Y deflection = dSrll2 Cosa = 3.8 X 0.990 = 3.7 mm 

2.4 Apex drop 

Apex  drop  from  the first-order elastic deflections 

Y deflection  at A,, 6, = 252.9 mm 

Apex drop at ULS, S,,, = 6, a, = 2~2.9/2.12 

Apex  drop  from curvature shortening t j C  

Rafter  transverse  deflections  at  ULS: 

ULS transverse load on  rafters = 11.85  kN/m 

= 119.3 mm 

2 wsr4 

384 Ele f f ,R  

Take  total  transverse  deflection = dCs2 = -- 

- - -  = 105.6 mm 2 11 .85~(21610)~  
384 205000 X 57705 X lo4 

Taking  shortening = 
n2(6cs2)' - ~ ~ ( 1 0 5 . 6 ) ~  

4 Sr 4x21610 
= 1.3 mm 

Apex  drop = 1.3/Sin 8 O = 9.3 mm 

Calculate the apex  drop  from increased rafter  axial force 

(i) Vertical  component of rafter  axial, V,  

= PRI Sin a = 919 Sing" = 127.9 kN 

(ii)  Reduced  slope 

Drop  from  first-order + curvature, dl = 6, + d/Sina, 

=119.3 + 1.3/Sin8" = 119.3 + 9.3 = 128.6 mm 

S, = (25000 - 4000)/C0~8" = 21400/C0~8" 1 21610 

)ate July 2001 

l a te  July 2001 

B.5 

B.5.2 

B.5.3 

B.5.4 
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Un-stressed rafter rise above haunch end, /z1 = 21206 Sin 8° = 2951 mm

Reduced rafter rise above haunch end, h2 = 2951 - 128.6 = 2823 mm

Reduced rafter slope, a' = Tan' (2823/21000) = 7.66°

(iii) Reduced vertical component of the rafter, V2

= Rl Sina = 919 x Sin7.66° = 122.4kN

(iv) Required increase in rafter axial force, OPR

= (V1
- V2)/Sin a'

= (127.9- 122.4)/Sina = 5.5/Sin7.66° = 41.1 kN

(v) Resultant increase in horizontal reaction at column top, OH

= 0PR Cos a' = 41.1 Cos a' = 40.7 kN

(vi) Resulting increase in tie force, 0 T

Haunch length = 4000/Cos a' = 4039 mm

c = 800 + 4039(Sin a' - Sin a'2) = 824 mm

OT = OH [(c + hr)/hT] = 41.1 (824 + 14200)/14200 = 43.1 kN

(vii) Horizontal movement of Z due to tie stretching, 0XT

Lateral displacement of the end of the tie:

OTx halfspan 43.1 x tO3 x25000
OXT = ___________ = _______________ = 0.6 mm

ATE 93.1x100x205000

e = 800 + 4000Tan8° = 1362 mm

OXZT =
e + 1T = 0.6

1362 + 14200 = 0.6 mmT
'T 14200

143

The  Steel 
Construction 
Institute 

Job No: CDS 139 Page 17 of 23 

Job Title BS 5950  Portals 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot,  Berks SL5 7QN Tied Portal Frame 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 

CALCULATION SHEET Checked by 

Made by 

Un-stressed  rafter rise above  haunch end, h,  = 21206 Sin 8" = 2951  mm 

Reduced  rafter  rise  above  haunch  end, h, = 2951 - 128.6 = 2823  mm 

Reduced  rafter  slope, a; = Tan-'  (2823/21000) = 7.66" 

(iii) Reduced  vertical  component of the rafter, V, 

= PR, Sin a; = 919 X Sin7.66" = 122.4 kN 

(iv) Required  increase in rafter  axial  force, 6 P R  

= (V, - V,)/Sin a; 

= (127.9 - 122.4)jSin a; = 5.5/Sin 7-66" = 41.1 kN 

(v) Resultant  increase in horizontal  reaction at column  top, 629, 

= 6PR C O S &  = 41.1 C O S %  = 40.7 kN 

(vi)  Resulting  increase in tie force, 6 T  

Haunch  length = 4000/Cos a = 4039 mm 

c = 800 + 4039(Sin a - Sin a,) = 824 mm 

S T  = SH, [(C + h,)/h,] = 41.1 (824 + 14200)/14200 = 43.1 kN 

(vii) Horizontal  movement of Z due to tie stretching, SX, 

Lateral displacement of  the end of the tie: 

ST X halfspan - 43.1 X lo3 X25000 SX, = - 

ATE 
= 0.6 mm 

93.1 x 100 x 205000 

e = 800 + 4000Tan 8 O = 1362 mm 

SX,, = SX, [ = 0.6 ( ) 14200 

e + h, 1362 + 14200 
= 0.6 mm 

)ate July  2001 

)ate July 2001 
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(viii) Horizontal movement of Zdue to column bending,

ÔHCc2(hT
+

c) = 40.7x103x8242x(14200 + 824) = 09 mm
3EICff C

3 x205000x77241

(ix) Rafter shortening from increased axial strain:

PL ÔPRXSR 41.1x103x25246
ÔSR = _____ = =0.4mm

AE ARE 144.0x100x205000

(x) Increased rafter drop dA

ôX ôXz +ôX = 0.6 + 0.9 1.5mm

dA = ôX /Tana2 + ôSr /Sina2 = 13.7 mm

(xi) Revised rafter slope:

d2 ô + J/Sina1 + dA =119.3 + l.3/Sin7.66° + 13.7

= 119.3 + 9.7 + 13.7 = 142.8mm

Revised rafter slope a2 = Sin' [(2951 - 142.8)/212061 = 7.61°

(xii) Check if d2 Id, is less than 1 .03

d2 Id,
= 142.8/128.6 = 1.11 > 1.03 so repeat steps (iii) to (xii)

2nd (iii) Reduced vertical component of the rafter, V2

= RI Sina,= 919 x Sin7.61° = 121.7 kN

2' (iv) Required increase in rafter axial force, ÔPR

= (V1 - V2)/Sina'2

= (127.9- 121.7)/Sin2 = 6.2/Sin 7.61° = 46.7kN

2 (v) Resultant increase in horizontal reaction at column top, ôH

=
ÔPR Cos 2 = 46.3 Cos 2 = 46.3 kN
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(viii) Horizontal movement of Z due to  column  bending, S,, 

- - SffcC2(h, + C )  - 4 0 . 7 ~ 1 0 ~ ~ 8 2 4 ~ X ( 1 4 2 0 0  + 824) = o.9 mm 

3 Eleff.C 

- 

3 x 205000 x 7724  1 

(ix) Rafter  shortening  from increased axial strain: 

PL - SS, = - - 
SPR x S,  41.1 x lo3 x25246 = o.4 mm 

- - 
A E  ARE 1 4 4 . 0 ~  100x205000 

(x) Increased rafter  drop d, 

SX, = SX,, + SX,, = 0.6 + 0.9 = 1.5 mm 

d, = SX,  /Tan&, + SS, /Sina2 = 13.7 mm 

(xi) Revised rafter  slope: 

d, = S ,  + d/Sina ,  + d, =119.3 + 1.3Kin7.66" + 13.7 

=119.3 + 9.7 + 13.7 = 142.8 mm 

Revised rafter  slope a2 = Sin-' [(2951 - 142.8)/21206] = 7.61" 

(xii) Check if d2  /d, is less than 1.03 

d, /dl = 142.W128.6 = 1.11 > 1.03 so repeat steps (iii)  to (xii) 

2nd (iii) Reduced vertical component of  the rafter, V, 

= P,, Sina2 = 919 x Sin7.61" = 121.7 kN 

2Ild (iv) Required increase in rafter axial force, S P ,  

= (V,  - VJSin a2 

= (127.9 - 121.7)/Sin cx2 = 6.2/Sin 7.61" = 46.7 kN 

2'ld (v) Resultant increase in horizontal reaction at column top, S H ,  

= dP, COS a2 = 46.3 COS cx2 = 46.3 kN 

)ate July 2001 

)ate July 2001 

1 44 
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2 (vi) Resulting increase in tie force, ÔT

Haunch length 4000/Cos a' = 4039 mm

c 800 + 4039(Sintz - Sina'2) = 827 mm

ÔT = ôH [(c + hT)/hT] = 46.3 x (827 + 14200)714200 49.0 kN

2" (vii) Horizontal movement of Z due to tie stretching, ÔXT

Lateral displacement of the end of the tie:

ôTx halfspan 49.Ox i03 x25000
ÔXT = ___________ = _________________ = 0.6 mm

ATE 144.Ox 100 x205000

e = 800 + 4000Tan8° = 1362 mm

e +h
ôX1 = ÔXT

h

T = 0.7 mm
T

2' (viii) Horizontal movement of Zdue to column bending,

= ôHc2(h1
+

c) 46.3x103x8272x(14200 + 827)= 1.0 mm
3EIeff c 3x205000 x77241

2 (ix ) Rafter shortening from increased axial strain:

ÔPRXS 46.7X103X25246ôSr = ______ = ________________ = 0.4mm
ARE 144.Ox 100x205000

2'' ( x ) Increased rafter drop dA

ôX = ÔXZT +ôX = 0.7 + 1.0 = 1.7mm

= ôX /Tan a'2 + ôS /Sin a'2 = 15.8 mm
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2"d (vi) Resulting increase in  tie force, 6 T  

Haunch length = 4000/Cos a = 4039 mm 

c = 800 + 4039(Sina - SinaJ = 827 mm 

6 T  = 6Hc  [(C + h,)/h,] = 46.3 X (827 + 14200)/14200  49.0 kN 

2nd (vii) Horizontal movement of 2 due to  tie stretching, S X ,  

Lateral displacement of the end of the tie: 

sx, = ST X halfspan - 49.0 X lo3 X25000 

A T E  
- 

1 4 4 . 0 ~  100x205000 
= 0.6 mm 

e = 800 + 4000  Tan8 O = 1362  mm 

2"d ( viii ) Horizontal movement of Z due  to  column bending, 6,, : 

- - 6HCC2(h, + C )  - 46.3 x lo3 ~ 8 2 7 ~ x ( 1 4 2 0 0  + 827) - = 1.0 mm 
3EIeff.c 3 x 205000 x 7724  1 

2nd ( ix ) Rafter shortening from  increased axial strain: 

6p~xsr 46.7X  103X25246 SS, = 
ARE 1 4 4 . 0 ~  100x205000 

- - = 0.4 mm 

2"* ( x ) Increased rafter drop d, 

SX, = SX,, + SX,, = 0.7 + 1.0 = 1.7 mm 

dA = SX,  /Tan a2 + 6S, /Sin 4 = 15.8 mm 

)ate July 2001 

)ate July 2001 
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2°c' ( xi) Revised rafter slope:

revised d2 = ô1 + J/Sina', + dA =119.3 + 1.5/Sin7.43° + 15.8

= 119.3 + 9.8 + 15.8 = 144.9mm

Revised rafter slope a'2 = Sin-' [(2951 - 144.9)/21206] = 7.605°

2' ( xii ) Check if revised d2 /d2 is less than 1 .03

revised d2 /d2 = 144.9/142.8 = 1.01

The additional apex drop was 1 % of previous - accept this value

Second-order axial force in rafters = P, + ôP = P, + 46.7 kN

2.5 Axial forces for the energy calculation

The total of the axial loads in the columns is not affected, so P2 = P1 which is
taken as the mid-height value calculated in 2.1 above.

The axial force in the rafters is the first-order force calculated in 2. 1 above plus
the second-order increase in force, ÔPR , from 2.4 above

LH col: P2 = 313 kN

LH rafter: P2 = 940 + 46.7 = 987 kN

RH rafter: P2 = 940 + 46.7 = 987 kN

RH col: P2 = 314 kN
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2'ld ( xi ) Revised  rafter  slope: 

revised d, = 6, + A/Sin a, + d, = 119.3 + l.VSin7.43" + 15.8 

= 119.3 + 9.8 + 15.8 = 144.9 mm 

Revised  rafter  slope a, = Sin-' [(2951 - 144.9)121206] = 7.605" 

2"d ( xii ) Check if revised d, /d, is less than 1.03 

revised d, Id, = 144.9/142.8 = 1.01 

The  additional  apex  drop was l % of previous - accept  this value 

Second-order  axial  force in rafters = P ,  + 6 P ,  = P ,  + 46.7 kN 

2.5 Axial forces for the energy  calculation 

The total of the axial  loads in the columns is not  affected, so P, = P,  which is 
taken  as the mid-height value calculated in 2.1  above. 

The  axial  force in the  rafters  is the first-order  force  calculated in 2.  l above plus 
the second-order  increase in force, 6 P R  , from 2.4 above 

LH  col: 

LH  rafter: 

RH  rafter: 

RH  col: 

P2 = 313 kN 

P2 = 940 + 46.7 = 987 kN 

P2 = 940 + 46.7 = 987 kN 

Pz = 314 kN 

~ 

l a te  July 2001 1 
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2.6 Second-order Energy Summation

147

B.2.2
ox'

Oyl

Original
position

Deflected
position

0y2

0x2

The energy summation is required to calculate 'M following the methods in
B.2.2
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Tied Portal Frame 

2.6 Second-order  Energy Summation 

6 x 1  

P 

Deflected 

position 

The  energy  summation is required to calculate A M following the methods in 
B.2.2 
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IDate

Date

July

July

2001

2001

Element for evaluation of Pc*phi*s*d(phi) AB BC Ca aD Db bc cE GF FE

X-AXIS DEFLECTIONS
Deflections from the elastic frame
dxa
dxb
(dxb - dxa)
Deflections from the plastic" frame
From tranverse loads on rafter
Sway of top of elastic column
dxa
dxb
(dxb - dxa)
Drop of mid-rafter hinge
dxa
dxb
(dxb - dxa)
From horizontal loads
Sway
dxa
dxb

(dxb - dxa)
Drop of mid-rafter hinge
dxa
dxb
(dxb - dxal
(Total of (dxb-dxalatcollaose

0.0 35.1 47,5 929 75.9 75.9 1044 0.0 112.1
35.1 47.5 92.9 75.9 75.9 104.4 1044 1121 104.4
35.1 12.4 45.4 -16.9 0.0 28.4 0.0 112.1 -7.7

0.0 219.7 232 1 232.1 232.1 232.1 232 1 0.0 219.7
2197 232.1 232 1 232.1 232 1 232 1 232.1 219.7 232.1
219.7 12.4 0.0 0.0 0.0 0.0 0.0 219.7 12.4

00 0.0 0.0 17,0 00 00 0.0 00 00
0.0 0.0 17.0 0.0 00 00 0.0 00 00
0.0 0.0 17.0 -17.0 0.0 0.0 0.0 0.0 0.0

00 191 191 191 19.1 191 19.1 00 191
19 1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1

19.1 0.0 0.0 0.0 0.0 0.0 0_U 19.1 0.0

0.0 00 00 0.5 0.0 00 0.0 00 0.0
00 00 05 00 0.0 00 0.0 00 0.0
0.0 0.0 0.5 -0.5 0.0 0.0 0.0 0.0 0.0

312.9 63.8 101.4 5.1 39.0 67.4 39.0 389.9 43.71

Y-AXIS DEFLECTIONS
Relative deflections from apex drop

00 00 00 803 1449 142.0 207 00 00
00 00 80.3 144.9 1420 20.7 0.0 00 0.0
0.0 0.0 80.3 64.5 -2.9 -121.3 -20.7 0.0 0.0

dxa 0.0 00 0.0 221.6 00 0.0 0.0 00 00
dxb 0.0 0.0 221.6 0.0 00 0.0 0.0 00 0.0
(dxb - dxa) 0.0 0.0 221.6 -221.6 00 0.0 0.0 0.0 0.0
Deflections from the "plastic" frame
Drop of mid-rafter hinge from transverse loads on rafter
dxa 0.0 0.0 0.0 120.9 0.0 0.0 0.0 0.0 00
dxb 00 0.0 120.9 0.0 0.0 0.0 0.0 0.0 00

0.0 0.0 120.9 -120.9 0.0 0.0 0.0 0.0 0.0(dxb - dxa)
Drop of mid-rafter hinge from sway loads

Factor on lambda_p 0 672
lambda p from first-order analysis 2.280
lambda_M 1.532

0.0 0.0 00 3.7 00 0.0 0.0 0.0 0.0
0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 3.7 -3.7 0.0 0.0 0.0 0.0 0.0

dya
dyb
(dyb - dya)
Deflections from the 'elastic' frame
Drop of mid-rafter hinge

dxa
dxb
(dxb - dxa)
Totals of (dyb - dya) at collapse 0.0 0.0 426.6 -281.7 -2.9 -121.3 -20.7 0.0 0.01

SHORTENING
psi (angle from X axis) 90.0 90.0 8.0 80 -8.0 -8.0 -8.0 900 90.0
L(dxb - dxa) at collapse]Sin(psi) 312.9 63.8 14.1 0.7 -5.4 -9.4 -5.4 389.9 43.7

[(dyb - dya) at collapse]*Cos(psi) 00 0.0 422.4 -278.9 -2.8 -1202 -20.5 00 00
phi * sat collapse 312.9 63.8 436.5 -278.2 -8.3 -129.5 -25.9 389.9 43,7
Incremental rotn = d(phi) from mechanism 1.000 1.000 1.000 0.218 0.218 0.174 1 000 1.000 1.000

IShortening = phi*s*d(phi) (modulus)

AXIAL FORCES

312.9 63.8 436.5 60.7 1.8 22.6 25.9 389.9 43-71

Pcforcolumns and rafters at ULS 313.0 313.0 939.5 939.5 939.5 939.5 939.5 314.0 314.0
Second-order increase in rafter axial 46.7 46.7 46.7 46.7 46.7
Design Axial 3130 313.0 986.2 986.2 986.2 986.2 986.2 3140 314.0
llncremental energy = Pc*phi*s*d(phi) 97.9 20.0 430.5 59.8 1.8 22.3 25.5 122.4 13.71 Sum = 794

WORK DONE IN ROTATING HINGES
Element for evaluating Mpr d(phi) AB BC Ca aD Db bc cE GF FE
MprA 0.0 00 0.0 869.2 00 869.2 869.2 0.0 0.0
MprB 0.0 00 8692 00 8692 869.2 0.0 0.0 0.0
MprA + MprB 0.0 0.0 869.2 869.2 869.2 1738.4 869.2 0.0 0.0
Incremental rotn = d(phi) from mechanism 1.000 1.000 1.000 0.218 0.218 0.174 1.000 1.000 1 000
IMpr*d(phi) 0.0 0.0 869.2 189.5 189.5 302.8 869.2 0.0 0.01 Sum = 2420
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CALCULATION SHEET I 

Element  for  evaluation  of Pc'phi*s'd(phi)  AB BC  Ca  aD Db  bc  cE GF  FE 

X-AXIS  DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dxa 
dxb 
(dxb - dxa) 
Deflections  from  the  "plastic"  frame 
From  tranverse  loads  on  rafter 
Sway of  top  of  elastic  column 
dxa 
dxb 
(dxb - dxa) 

dxa 
Drop of mid-rafter  hinge 

dx b 
(dxb - dxa) 

Sway 
From  horizontal  loads 

dxa 
dxb 
(dxb - dxa) 
Drop  of  mid-rafter  hinge 
dxa 
dxb 

35 1 47.5 92.9 75 9 75 9 104 4 1044 112 1 104.4 
0 0  351 47.5 929 759 759 1044 0 0  112.1 

35.1 12.4 45.4 -16.9 0.0 28.4 0.0 112.1 -7.7 

219 7 
0 0  

219.7 

0 0  
0 0  
0.0 

19 1 
0 0  

19.1 

0.0 
0 0  

2197 232 1 232 1 232 1 232.1 232 1 0 0  219 7 
232 1 232 1 232 1 232 1 232 1 232.1 219 7 232 1 

12.4 0.0 0.0 0.0 0.0 0.0 219.7 12.4 

0.0 0 0  170 0 0  0 0  0.0 0 0  0 0  
0.0 17.0 0 0  0 0  0 0  0.0 0 0  0 0  
0.0 17.0 -17.0 0.0 0.0 0.0 0.0 0.0 

191 191 191 191 1 9 1  1 9 1  0 0  191 
191 191 1 9 1  1 9 1  1 9 1  1 9 1  1 9 1  191 
0.0 0.0 0.0 0.0 0.0 0.0 19.1 0.0 

0 0  0 0  0.5 0 0  0 0  0 0  0 0  0.0 
0 0  0 5  0 0  0 0  0 0  0.0 0 0  0.0 

[Total of (dxb - dxa)  at  collapse 
(dxb - dxa) 

312.9 63.8 101.4 5.1 39.0 67.4 39.0 389.9  43.71 
0.0 0.0 0.5 -0.5 0.0 0.0 0.0 0.0 0.0 

Y-AXIS  DEFLECTIONS 

dya 
Relative  deflections  from  apex  drop 

dYb 0 0   0 0  
- dya) 0.0 0.0 

0 0  0 0  

Deflections  from  the  "elastic"  frame 
Drop  of  mid-rafter  hinge 
dxa 0.0 0 0 
dxb 0.0 0.0 
(dxb - dxa) 0.0 0.0 
Deflections  from  the  "plastic"  frame 

dxa 
Drop of mid-rafter  hinge  from  transverse  loads  on  rafter 

0.0 0 0 
dxb 0 0  0 0  
(dxb - dxa) 0.0 0.0 
Drop  of  mid-rafter  hinge  from  sway  loads 
dxa 
dxb 

0.0 0.0 
0.0 0.0 

0 0  
80.3 
80.3 

0.0 
221.6 
221.6 

0.0 
120.9 
120.9 

0 0  
3.7 

8 0 3  144 9 142.0 207 0 0 0 0  
144.9 142 0 20.7 0.0 0 0 0.0 
64.5 -2.9 -121.3 -20.7 0.0 0.0 

221.6 0 0 0.0 0.0 0 0 0 0 
0.0 0 0 0.0 0.0 0 0 0.0 

-221.6 0.0 0.0 0.0 0.0 0.0 

120.9 0.0 0.0 0.0 0.0 0 0 
0.0 0.0 0.0 0.0 0.0 0 0 

-120.9 0.0 0.0 0.0 0.0 0.0 

3.7 0 0 0.0 0 0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 

(dxb - dxa) 
[Totals  of  (dyb - dya)  at  collapse 

0.0 0.0 3.7 -3.7 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 426.6 -281.7 -2.9 -121.3 -20.7 0.0 0.01 

SHORTENING 
psi  (angle from X axls) 
[(dxb - dxa) at collapse]'Sin(ps~) 
[(dyb - dya) at collapse]'Cos(psi) 
Dhl * S at  collaDse 

312.9 63.8 14.1 0 7  -5.4 -9.4 -5.4 389.9 437 
90.0 90.0 8.0 8 0  -8.0 -8.0 -8.0 900 90.0 

3129 63.8 436.5 -278.2 -8.3 -129.5 -25.9 389.9 43.7 
0 0  0.0 422.4 -278.9 -2.8 -120 2 -20.5 0 0  0 0  

(Shortening = phi's'd(phi)  (modulus) 
Incremental  rotn = d(phi)  from  mechanlsm 

312.9 63.8 436.5 60.7 1.8 22.6 25.9 389.9 43.71 
1.000 1.000 1.000 0.218 0.218 0.174 1000 1.000 1.000 

AXIAL  FORCES 
Pc  for  columns  and  rafters at ULS 313.0  313.0 939.5 939.5  939.5  939 5 939.5  314.0  314.0 
Second-order  increase  in  rafter  axial 
Design  Axlal 

46.7 46.7 46.7 46.7 46.7 
313 0 313.0  986.2 986.2  986.2 986.2 986.2 3140 314.0 

llncremental  energy = Pc*phi*s'd(phi) 97.9 20.0 430.5 59.8 1.8 22.3 25.5 122.4 13.71 Sum = 

WORK DONE IN  ROTATING HINGES 
Element for evaluating  Mpr  d(phi) AB  BC  Ca aD Db  bc  cE GF FE 
MprA 0.0 0 0 0 0 869.2 0 0 869.2  869.2 0.0 0.0 
MprB 0.0 0 0 869 2 0 0 869 2  869.2 0.0 0.0 0.0 
MprA + MprB 0.0 0.0 869.2 869.2  869.2  1738.4  869.2 0.0 0.0 

Mpr*d(phi) 
Incremental  rotn = d(phi)  from  mechanism 1.000  1.000  1.000  0.218  0.218 0.174  1.000 1.000 1000 

Factor  on lambda-p 0 672 
lambda  p  from  first-order analysis 2.280 
lambda-M I 1.532, 

0.0 0.0 869.2 189.5 189.5 302.8 869.2 0.0 0.01 Sum = 

794 

2420 

1 48 



2.6 Load factor at failure, AM

EP2çbsdq5 =794q

2Mdb =2420q5

'M =
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B.7

1

2.280 1 + ( 4'5

1,, 2420 q5

= 2.280x0.672 = 1.532

AM > 1.0, so the frame has passed the check for in-plane stability.
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2.6 Load factor  at failure, A,,,, 

= 2420 4 

1 

AM = 2.280 - l  + ( 794 4 l] = 2.280X0.672 
2420 4 

= 1.532 

/lM > 1.0, so the frame has passed the check for in-plane stability. 

l a t e  July 2001 
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1. INPUT FROM FIRST-ORDER ANALYSIS

The calculations have been carried out using spreadsheet software. The
numerical values presented below are the values from the spreadsheet rounded
to a suitable number of significant figures.

1 .1 General Arrangement

Angle of rafters:

Span = 30 m

a1 = a2 = 6°

30
Developed length of rafter = = 30.165 m

cos 6

Height of column from base to Neutral Axis of rafter = 10.0 m

151
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1. INPUT  FROM FIRST-ORDER ANALYSIS 

The  calculations have been carried  out  using  spreadsheet  software.  The 
numerical  values  presented  below are the values  from the spreadsheet  rounded 
to  a  suitable  number of significant  figures. 

1.1 General Arrangement 

15000  15000 15000 15000 

6 O' 
457x191~67 UB 457x191~67 UB 

" 
0 

1 3  3 

I 9400 9350 - N 
0 

N 
' 2  

NOmlnalIy pnned 

- 1 -  

Span 1 Span 2 

Angle of rafters: a, = a2 = 6" 

Span = 30  m 

30 
cos 6"  

Developed  length of rafter = - - - 30.165  m 

Height of column  from base to  Neutral  Axis of rafter = 10.0  m 
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1.2 Loading

Developed Length of Rafters

Notional Horizontal Force

0.5% factored load on span

= 30 = 30.165
cos 6°

= 0.5% x 2 x [30.165 x (0.84 + 1.12) + 30 x (1.26 + 5.76)]

= 0.005 x 2 x [59.1 + 210.6] =2.7 kN

1 52

Frame spacing = 6 m

Dead = 0.100 x 6.000 x 1.4 = 0.840 kN/m along slope
Service = 0.150 x 6.000 x 1.4 = 1.260 on plan
Imposed = 0.600 x 6.000 x 1.6 = 5.760 on plan
Self Weight = 80 x 102 x 1.000 x 1.4 = 1.120 along slope

Cl 2.4.2.4.
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1.2 Loading 

NHF NHF NHF 

zz? mm 7?n? 

Frame  spacing = 6 m 

Dead = 0.100 x 6.000 x 1.4 = 0.840  kN/m along slope 
Service = 0.150 X 6.000 x 1.4 = 1.260  on plan 
Imposed = 0.600 X 6.000 X 1.6 = 5.760  on plan 
Self Weight = 80 X lo-* X 1.000 X 1.4 = 1.120 along slope 

Developed  Length of Rafters = = 30.165 30 
cos 6" 

Notional Horizontal  Force 

0.5% factored load on span 

= 0.5% X 2 X [30.165 X (0.84 + 1.12) + 30 X (1.26 + 5.76)] 

= 0.005 X 2 X [59.1 + 210.61 =2.7 kN 

)ate May 2001 

la te  July 2001 

Cl 2.4.2.4. 
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1 .3 Plastic Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism (determined elsewhere). These are the incremental
rotations as used to calculate the collapse factor of the frame using the classic
Rigid-Plastic (Virtual Work) method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism

The mechanism will have two instantaneous centres of rotation, as shown
below (locations of hinges determined from analysis).

1 53

I

1

12
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~ 1.3 Plastic Hinge  Incremental  Rotations 

The values of incremental rotation of  the hinges are taken from the first-order 
collapse mechanism (determined elsewhere).  These are the incremental 
rotations as  used to calculate the collapse factor of  the frame using the classic 
Rigid-Plastic (Virtual Work)  method. 

The  second-order analysis uses the relative magnitude of  the instantaneous 
rotations, so the absolute magnitude of each rotation does not affect the 
calculations. 

Where the analysis has been  performed by methods other than the Rigid-Plastic 
method (e .g. by  the Semi-Graphical  method), the incremental rotations can  be 
deduced from the geometry of  the frame and  the position of  the hinges. It is 
not necessary to repeat the calculation of  the collapse factor by the 
Rigid-Plastic method. 

Failure Mechanism 

The  mechanism will have two instantaneous centres of rotation, as shown 
below (locations of hinges determined  from analysis). 
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Node Locations (coordinates)

Pt A- (0.0, 0.0)

PtB (0.0, 10.0)

Pt C-. (15.0, {10.0 + 15.OTan6})

PtD- (30.0, 10.0)

Pt E -. (30.0, 0.0)

Pt F - ({30.0+15.0}, {10.0 + 15.OTan6})

PtG- (60.0, 10.0)

Pt H- (60.0, 0.0)

Pt a -. (10.9llCos6, {10.0 + 10.9llSin6})

Pt b -. ({30.0-2.993Cos6}, {10.0 + 2.993Sin6})

Pt c -. ({60.0- 10.91 lCos6}, {10.0 + 10.9llSin6})

Pt d - (60.0, 9.400)

Find Centre of Rotation I1

= (0.0, 0.0)

= (0.0, 10.0)

= (15.0, 11.577)

= (30.0, 10.0)

= (30.0, 0.0)

(45.0, 11.577)

= (60.0, 10.0)

= (60.0, 0.0)

= (10.851, 11.141)

= (27.023, 10.313)

= (49.149, 11.141)

= (60.0, 9.400)

XE - XA

= 60.0 - 30.0
(1.719) - (0.0)
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30.0 0.0

( 10.851' - ( 30-27.023
11.141) 10.313

= 0.0+(0.97397x23.760)

=
(dx (dX'l

dY)Aa dY)Eb

X =X + ><A
dY)A

PtI1- (23.142, 23.759)

Find Centre of Rotation 12

XH - XE

(dx (dx
k dY)EC ( dY)Hd

= 23.759 m

= 23.142 m

= 17.454 m

X12 = 60.0 (obvious by inspection)

Pt 12 -. (17.454, 60.0)
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Node  Locations  (coordinates) 

Pt A -  (0.0, 0.0) 

Pt B - (0.0, 10.0) 

Pt C -  (15.0, (10.0 + 15.OTan6)) 

Pt D -  (30.0,  10.0) 

Pt E - (30.0, 0.0) 

Pt F - ((30.0+ 15.01,  (10.0 + 15.OTan6)) 

Pt G-  (60.0,  10.0) 

Pt H -  (60.0, 0.0) 

Pt a - (10.911Cos6, (10.0 + 10.911Sin6)) 

Pt b - ((30.0-2.993Cos6},  (10.0 + 2.993Sin6)) 

= (0.0, 0.0) 

= (0.0, 10.0) 

= (15.0, 11.577) 

= (30.0, 10.0) 

= (30.0, 0.0) 

= (45.0,  11.577) 

= (60.0,  10.0) 

= (60.0, 0.0) 

= (10.851,  11.141) 

= (27.023,  10.313) 

Pt c - ((60.0- 10.91  1Cos6}, (10.0 + 10.911Sin6)) = (49.149,  11.141) 

Pt d - (60.0,  9.400) = (60.0,  9.400) 

Find  Centre of Rotation I, 

- - 30.0 - 0.0 K ,  = - = 23.759 m 
10.851 ( - ( %)Eb (G) - ( 10.313 ) 30-27.023 

x,, = x, + [ ( z)Aa x = 0.0+(0.97397~23.760) = 23.142 m 

Pt I, - (23.142,  23.759) 

Find  Centre of Rotation I, 

- xE 
K 2  = 

- - 60.0 - 30.0 = 17.454 m 
(1.719) - (0.0) 

X,, = 60.0 (obvious by inspection) 

Pt I, - (17.454,  60.0) 

late May 2001 

late July 2001 
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= Ox 11. 141

23.759 — 11.141

10.313

= 0.883 8

= 1.151 0

= 1.151 Ox 1.765 = 2.0310

8 = 0 x 2.0310x 17.4549.400
H -

9.400

= 2.031 8 x 0.857 = 1.740 0

1 .4 Axial forces at ULS from first-order plastic analysis
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Hinge Rotations

Taking the instantaneous rotation about A as 0

Ox

IIb= & x

yc
012

= °E x
Y12-Yc

23.759 — 10.313= 0.8830 x

11. 141= 1.1518 x
17.454 — 11.141

Span 1

LH column: at base = 131.9 kN, at haunch = 122.3 kN

LH rafter: at column 59.8 kN, at apex = 46.0 kN

RH rafter: at column = 62.0 kN, at apex = 48.2 kN

RH column: at base = 291.5 kN, at haunch = 283.3 kN

Span 2

LH rafter: at column = 62.0 kN, at apex = 48.3 kN

RH rafter: at column = 60.1 kN, at apex = 46.3 kN

RH column: at base = 132.8 kN, at haunch = 122.6 kN
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Hinge  Rotations 

Taking the instantaneous rotation about A as 8 

K 11.141 6, = e x -  = e x  
r l l  -'a 23.759 - 11.141 

= 0.883 e 

Y,, -'b BE = e,, x - = 0 . 8 8 3 ~  X 
23.759 - 10.313 

Yb 10.313 
= 1.151 6 

?2-'d 17.454 - 9.400 eH = e,, x - = 2.0318 X 
'd 9.400 

1.4 Axial forces at ULS from first-order  plastic  analysis 

Span 1 

LH  column: 

LH  rafter: 

RH  rafter: 

RH column: 

Span 2 

LH rafter: 

RH rafter: 

RH column: 

at base =131.9 kN,  at haunch = 122.3 kN 

at  column = 59.8 kN, at apex = 46.0 kN 

at column = 62.0 kN, at  apex = 48.2 kN 

at base = 29 1.5 kN,  at haunch = 283.3 kN 

at column = 62.0 kN,  at apex = 48.3 kN 

at  column = 60.1 kN,  at apex = 46.3 kN 

at base = 132.8 kN, at haunch = 122.6 kN 

)ate May 2001 

)ate July 2001 
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1.5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS 5950-1 :2000, Annex 1.2. These
may be taken from section tables.

Mrx = p Srx � 1.2 p Z,, Cl 4.2.5

For the axial forces in this frame under this load case

Mpr rafters(457 x 191 x 67 UB) = 404 kNm

Mpr external columns (457 x 191 x 74 UB) = 454 kNm

1 .6 Load factor at formation of the first hinge, A,

From the frame analysis output, the load factor at the formation of the first
hinge is:

= 0.957

1 .7 Plastic collapse factor, A.

From the frame analysis, the plastic collapse factor calculated by first-order
analysis is:

= 1.122

1.8 Member inertias, I,

External columns: 457x 191 x 74 UB: I, = 33320 cm4

Rafters: 457x 191 x 67 UB: I, = 29380 cm4

Internal column: 203 x203 x 60 UC: I, = 6125 cm4
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1.5 Reduced  Plastic Moments  at ULS from first-order  analysis 

Use the reduced moment capacity for the sections to account for the co-existent 
axial  force,  calculated in accordance with BS 5950-1:2000, Annex 1.2.  These 
may be taken from section tables. 

For the axial  forces in this frame  under this load case 

Mpr rafters(457 x 191 x 67 UB) = 404 kNm 

M,,, external  columns  (457 X 191 x 74 UB) = 454  kNm 

1.6 Load factor at formation of the first  hinge, A, 

From the frame  analysis  output, the load factor at the formation of the first 
hinge is: 

1, = 0.957 

1.7 Plastic  collapse factor, A,, 

From the frame  analysis, the plastic collapse  factor  calculated by first-order 
analysis is: 

/l, = 1.122 

1.8 Member inertias, I, 

External  columns: 457x 191 x 74 UB: I ,  = 33320 cm4 

Rafters: 457x 191 x 67 UB: Zx = 29380 cm4 

Internal column:  203 x203 X 60  UC: I, = 6125  cm4 

)ate May  2001 

late July 2001 

Cl 4.2.5 
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1 .9 Deflections of frame at A1 (formation of the first hinge)

The following deflections are from the first order frame analysis output.

ÔXB -33.0mm
ÔYB

= 0.6 mm

= - 8.8 mm = 234.7 mm

ÔXD 15.3 mm ÔYD = 1.7mm

ôxF = 38.3 mm ôyF = 224.6 mm

ôxG 61.4 mm ôyG
= 0.6 mm

2. SECOND-ORDER ANALYSIS

2.1 Axial forces in members

Use the average axial forces in the members, from first order analysis

Span 1

LH col: take mid-height ULS = (131.9 + 122.3)/2 = 127.1 kN

LH rafter: take mid-length ULS = (59.8 + 46.0)/2 = 52.9 kN

RH rafter: take mid-length ULS = (62.0 + 48.2)/2 = 55.1 kN

RH col: take mid-height JLS = (291.5 +283.3)/2 = 287.4 kN

Span 2

LI-I rafter: take mid-length JLS = (62.0 + 48.3)/2 = 55.2 kN

RI-I rafter: take mid-length ULS = (60.1 + 46.3)12 = 53.2 kN

RH col: take mid-height ULS = (132.8 + 122.6)/2 = 127.7 kN

1 57

Silwood Park, Ascot,  Berks SL5 70N 
Telephone: (01 344) 623345 

Two-span Portal Frame 
Fax: (01 344)  622944 

CALCULATION SHEET Checked by 

Client DETR Made by CMK 

WIS 

1.9 Deflections of frame at A, (formation of the first hinge) 

The following deflections are  from the first  order  frame analysis output, 

S,, = -33.0 mm S,, = 0.6 mm 

S,, = - 8.8 mm S,, = 234.7 mm 

S,, = 15.3 mm S,, = 1.7 mm 

S,, = 38.3 mm S,, = 224.6 mm 

S,, = 61.4 mm S,, = 0.6 mm 

2. SECOND-ORDER ANALYSIS 

2.1 Axial forces in members 

Use the average axial forces in the members,  from first order analysis 

span 1 

LH  col: take mid-height PuLs = (131.9 + 122.3)/2 = 127.1 kN 

LH  rafter: take mid-length P,,, = (59.8 + 46.0)/2 = 52.9 kN 

RH  rafter: take mid-length P,,Ls = (62.0 -t- 48.2)/2 = 55.1 kN 

RH col: take mid-height PLILS = (291.5 +283.3)/2 = 287.4 kN 

Span 2 

LH  rafter: take mid-length PLILs = (62.0 + 48.3)/2 = 55.2 kN 

RH rafter: take mid-length PLILS = (60.1 + 46.3)/2 = 53.2 kN 

RH col: take mid-height PuLs = (132.8  +122.6)/2 = 127.7 kN 

)ate May 2001 

)ate July 2001 
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2.2 Bending Deflections of the "elastic" frame

2.2.1 Stiffness reduction factors allowing for P.O effects A.3.2

Columns

The stiffness of each external column differs from the stiffness of the internal
column. Therefore the reduction in frame stiffness is calculated from the sum
of the ULS loads in the columns and the sum of the critical loads of the
columns.

Sum of load in columns, EPULs 127.1 + 287.4 + 127.7 = 542.2 kN

External columns: 4 = 33320 cm4 A.3.2
h = 10000 mm

Nominal pinned bases a = 1.7 A.2.4

cr = rc2EII(ah)2 = m2x205000x33320x104/(1.7x10000)2 = 2333 kN

Internal column: 4 = 6125 cm4
h = 10000 mm

Nominally pinned bases a = 1.7

cr = it2EI/(ah)2 = 7t2X205000x6125 X 10'V(1.7x 10000)2 = 429 kN

Sum of load in columns, EP cr 2333 + 429 + 2333 = 5094 kN

(1 — EPULS /p) = (1 - 542.2/5094) = (1 - 0.147) = 0.894

1/(1 — EPULS 'Pcr) = 1.119

Rafters A3.2

Span 1

Average ULS (52.9 + 55.1)12 = 54.0 kN

I,, = 29380 cm4, L = 30165mm, a = 1.0

Pcr = 'TC2EI/(aL)2 = 1t2X205000x29380x1041(1.Ox 30165)2 = 653 kN

Reduction factor is given by:

(1-PULS "cr) = (1 — 54.0/653) (1 — 0.083) 0.917
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2.2 Bending Deflections of the "elastic" frame 

2.2.1 Stiffness reduction factors allowing for P.6 effects 

Columns 

The stiffness of each  external  column  differs  from the stiffness of  the internal 
column.  Therefore the reduction in frame stiffness is calculated from the sum 
of the ULS loads in  the columns  and the sum of the critical loads of the 
columns. 

Sum of load in columns, W,,, = 127.1 + 287.4 + 127.7 = 542.2 kN 

External  columns: Z, = 33320  cm4 
h = 10000 mm 

Nominal pinned bases a = 1.7 

P,, = 7~'EZ/(ah)~ = 7~~x205000 x 33320 X 10'41 .7 x 10000)' = 2333 kN 

Internal column: Z, = 6125  cm4 

Nominally pinned bases a = 1.7 

P,, = 7~~EZ/(ah)~  = n2 X205000~6125 X 104/(1 .7 X 10000)2 = 429 kN 

Sum of load in columns, 2 P  ,T = 2333 + 429 +2333 = 5094 kN 

h = 10000  mm 

(1 - EPULs /I$,,) = (1 - 542.2/5094) = (1 - 0.147) = 0.894 

1/(1 - .CPU,, / Q c r )  = 1.119 

Rafters 

span 1 

Average PuLs = (52.9 + 55.1)/2 = 54.0 kN 

I, = 29380 cm', L = 30165mm, a = 1.0 

PCr = TC'EZ/(~L)~ = 7 ~ ~ x 2 0 5 0 0 0 ~ 2 9 3 8 0 ~   1 0 ' / ( 1 . 0 ~ 3 0 1 6 5 ) ~  = 653 kN 

Reduction  factor is given by: 

( 1 - P " L S  /P,,) = (1 - 54.01653) (1 - 0.083) = 0.917 

)ate May 2001 

)ate July 2001 

A.3.2 

A.3.2 

A.2.4 

A3.2 
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Span 2

Average ULS = (55.2 + 53.2)72 = 54.2 kN

= 29380 cm4, L = 30165mm, a = 1.0

cr = rt2EI/(aL)2 = rc2x205000x29380x104/(1.0x30165)2 = 653 kN

Reduction factor is given by:

('—PtJLs /1cr) = (1 — 54.2/653) = (1 — 0.083) = 0.917

2.2.2 Second order magnification factors

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

1- -
Sh h3 D.2.5

3EIeffR

+
3E1

LH Rafter and Column

4ff,R = 'R (1 1cr) = 29380(1 — 54/653) = 26951

'eff.c = Ic (1 — P/Pcr) = 33320 (1 — 127.1/2333) = 31505

S/i2 = 30165x(10000)2 = 0.01820
3EIeffR 3x205000x26951 X iO

h3 i00003______ = __________________ = 0.00516
3EIeffC 3x205000x31505x iO

K = 1 =42.8NImmSubi 0.01820 + 0.00516

RH Rafter and Column

'eff, R = 'R (1 -/P) = 29380 (1 - 54.2/653) = 26944

'eff.c = I (1 PIPcr) = 33320 (1 - 122.6/2333) = 31496
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span 2 

Average PLILS = (55.2 + 53.2)/2 = 54.2 kN 

Z, = 29380 cm4, L = 30165mm, a = 1.0 

PCr = TC*EZ/(~L)~ = ~ ~ ~ ~ 2 0 5 0 0 0 ~ 2 9 3 8 0 X  104/(1.0~30165)2 = 653 kN 

Reduction  factor  is  given by: 

( 1 - P L J L S  /Pcr) = (1 - 54.2/653) = (1 - 0.083) = 0.917 

2.2.2 Second order magnification  factors 

The  notional sway deflection  is  calculated  from the sum of the stiffnesses K for 
each of  the column and rafter  pairs: 

Sway stiffness from column  and  rafter  stiffness 

LH Rafter and Column 

Ieff, R = (1 - P / P c r )  = 29380 (1 - 54/653) 

Zeff.c = Z, (1 - P/Pcr) = 33320 (1 - 127.1/2333) 

Sh2 30 165 x ( 1 OOOO)* - -  = 0.01820 
3Eleff,R  3 x 205000 x 2695 l x lo4 

- -  h 3  - 10000~ = 0.00516 
3E& 3 X 205000 X 3 1505 X lo4 

1 
0.01820 + 0.00516 KSubl  = = 42.8 N/mm 

RH  Rafter  and  Column 

Zeff,c = I, ( l  - P/Pcr) = 33320 (1 - 122.612333) 

= 26951 

= 31505 

= 26944 

= 31496 

la t e  May 2001 

l a t e  July 2001 

D.2.5 
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Sh2 30165x(10000)2 = 0.01820
3EIeffR 3 X 205000 X 26944 X I

h3 ________________________ = __________________ = 0.00516
3EICff c x205000x31496x i04

K = I =42.8N/mmSub2 0.01820 + 0.00516

Sway stiffness from nominal base fixity

K=!= 1

b
5/i3 h3 D.4

+

3EJe

K = 1 =23.9N/mmbext (0.0366 + 0.00516)

Total Frame Stiffness

= K Subi + KbCXI + KSUb2 + KbCXt

= 42.8 + 23.9 + 42.8 +23.9 = 133.5 N/mm

H = 0.005 x [sum of column reactions] = 0.005 x [542.2] = 2.711 kN

H 2.711x1000ô =—= =20.31mm'
EK 133.5

A = h
=

10000 =2.5cr1
200ô2 200x20.31

Sway mode magnification

Acr1 = 1.7
A 1cr1

2.2.3 Deflection calculations A.3.4

Sway deflections D.2.3

The first-order sway deflection ôX, is calculated from the sum of the

160
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Sh2 - 30 165 x (1 0000)2 
~~ = 0.01820 
3Eleff,R  3 X 205000 X 26944 X lo4 

~~ h 3  - 10000~ = 0.00516 
3EI,ff,c  3 x 205000 x 3 1496 x IO4 

1 
0.01820 + 0.00516 KSuh2 = = 42.8  N/mm 

Sway stiffness  from nominal base fixity 

1 
(0.0366 + 0.00516) Kh ext = = 23.9  N/mm 

Total Frame Stiffness 

' K  = K Sub I + Kb ext + K Sub 2 + K h ex1 

' K  = 42.8 + 23.9 + 42.8  +23.9 = 133.5 N/mm 

H = 0.005 X [sum  of column reactions] = 0.005 X [542.2] = 2.711 kN 

h -  10000 
Jcr, = ~ - 

200 c5"2 200 x 20.31 
= 2.5 

Sway mode magnification 

[&] = 1.7 

2.2.3 Deflection calculations 

Sway deflections 

The first-order  sway deflection m,, is calculated from the sum of the 

)ate May 2001 

)ate July 2001 

D.4 

A.3.4 

D.2.3 

1 60 
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stiffnesses K for each of the colunm and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of 'cr)

K=-= 1

ô Sh h3

Sub Frame 1 (Elastic)

Sh2 = 30165 x(10000)2 = 0.01669
3EIR 3x205000x29380x i04

h3 i'____ = ____________________ = 0.00488
3EI 3x205000x33320x i04

K = 1 =46.4N/mmSubi 0.01669 + 0.00488

Sub Frame 2 (Elastic)

As Sub frame 1

K = 1 =46.4N/mmSub2 0.01669 - 0.00488

Total Frame Stiffness

= KsUbi + Ks5b2

= 46.4 + 46.4 = 92.7 N/mm

First-order sway deflection

21H 0.957x2.711x1000
OX =—= =27.99mm

iS

2K1 92.7

A A A.3.4
ox = (OX —OX ) ><

cr2 + ox x cr1
2 1 is

2cr2
— 1

is
'cr1

— 1

A
Ôy=Ôy x cr2

1 'cr2 — 1
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stiffnesses K for each of  the column  and rafter pairs.  (The base stiffness of 
nominally  pinned bases is not included because this is not a stability 
calculation like the calculation of A,,). 

Sub Frame 1 (Elastic) 

Sh2 - 30 165 X ( 1 OOOO)* - -  = 0.01669 
3EIR 3 X 205000 X 29380 X lo4 

- -  h 3  - 10000~ 
3 ~ 4  3 X 205000 X 33320 X 104 

= 0.00488 

1 
0.01669 + 0.00488 KSubl = = 46.4 N/mm 

Sub Frame 2 (Elastic) 

As Sub  frame 1 

1 
0.01669 + 0.00488 KSubZ = = 46.4  N/mm 

Total Frame Stiffness 

= K Sub I + K Sub 2 

ZK = 46.4 + 46.4 = 92.7 N/mm 

First-order sway deflection 

A ~ H  - 0.957X2.711XlOOO = 27.99 mm 
92.7 

)ate May 2001 

)ate July 2001 

A.3.4 
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Values of oX1 and O)" are taken from first order analysis (See Sheet 7).

0XB = (-33.0 - 27.99) x 1.12 + 27.99 x 1.7 =-21.1 mm
= 0.6 x 1.12 = 0.7mm

= (—8.8 - 27.99) X 1.12 + 27.99 x 1.7 = 6.0 mm

0yC
= 234.7 xl.12 = 262.7mm

= (15.3 - 27.99) x 1.12 + 27.99 x 1.7 = 32.9 mm
D =1.7x1.12 =1.9mm

= (38.3 - 27.99) x 1.12 + 27.99 x 1.7 = 58.7mm
°yF = 224.6 x 1.12 = 251.4mm

=(61.4 - 27.99) X 1.12 + 27.99 x 1.7 = 84.5mm
°yG =0.6 x 1.12 = 0.7mm

2.3 Bending deflections of the "plastic" frame A.4

2.3.1 Stiffness reduction factors to allow for P.o effects

Columns: as the "elastic" frame

External Column RHS (1 - ULS /EPcr) = 0.946

Internal Column (1 - ULS /Pcr) = 0.330

External Column LHS (1 - ULS /EPcr) = 0.945

Rafters: as the "elastic" frame, because that used a = 1.0

Span 1: (1—uLs /Pcr) = 0.917

Span 2: (l-PULS /I') = 0.917

2.3.2 Second Order Magnification Factor

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of
the rafter and column pairs between plastic hinges and the base stiffness of
each column.

1 62
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Subject Second-order Worked Example: 

Two-span Portal Frame Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET Checked by 

Client DETR Made  by CMK 

WIS 

Values of S X ,  and SY, are taken from first order analysis (See Sheet  7). 

S,, = (-33.0 - 27.99) X 1.12 + 27.99 x 1.7  =-21.1 mm 
S,, = 0.6 X 1.12 = 0.7  mm 

S,, = (-8.8 - 27.99) X 1.12 + 27.99 X 1.7 = 6.0 mm 
S,, = 234.7 X 1.12 = 262.7  mm 

S,, = (15.3 - 27.99) X 1.12 + 27.99 X 1.7 
S,, = 1.7 X 1.12 = 1.9  mm 

S,, = (38.3 - 27.99) X 1.12 + 27.99 X 1.7 
S,, = 224.6 X 1.12 = 251.4  mm 

S,, = (61.4 - 27.99) X 1.12 + 27.99 X 1.7 
S,, = 0.6 X 1.12 = 0.7 mm 

= 32.9 mm 

= 58.7 mm 

= 84.5 mm 

2.3  Bending deflections of the “plastic” frame 

2.3.1 Stiffness reduction factors to allow for P.5 effects 

Columns: as the “elastic”  frame 

External Column RHS (1 - EPuLs /EPcr) = 0.946 

Internal Column (1 - EPuLs / W c r )  = 0.330 

External  Column LHS (1 - EPuLs / W c r )  0.945 

Rafters: as the “elastic”  frame, because that  used a = 1.0 

Span 1: ( l-PuLs /Pcr) = 0.917 

Span  2: ( l-PuLs /Pc,) = 0.917 

2.3.2 Second Order Magnification Factor 

Sway mode magnification factor 

The notional sway deflection is calculated from the sum of  the stiffnesses K of 
the rafter  and  column  pairs between plastic hinges and the  base stiffness  of 
each  column. 

)ate May 2001 

)ate July 2001 

A.1 4 
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Job Title BS 5950 Portals

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QNJ Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

Sway stiffness from colunm and rafter stiffness.

1K2 -
5h2 h3 D.3.5

3EIeffR
+

3EIeff c

Sub Frame 1: LH Column and Rafter Span 1

Sh2 = 30165 x(10000)2 = 0.01820
3EIeffR 3 X 205000 X26951 X i04

h3 iOOOo______ = __________________ = 0.00516
3EICffC 3x205000x31505xio

K = 1 =42.8N/mmsub 1 0.01820 + 0.00516

Sub Frame 2: Internal Column and Rafter Span 2

S/i2 = 30165x(10000)2 = 0.01820
3EIeffR 3X205000X26944x io

h3 = 10000 = 0.0805
3 EI 3 x 205000 x 2020 x i04

K = 1 = 10.1 N/mmsub 2 0.01820 + 0.0805

Nominal Base fixity

H 1

Kb--_ 5/i3 D.4
+

3EICIf

External Column

K = 1 =22.8N/mmbext
(0.0387 + 0.00516)
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Subject Second-order  Worked  Example: 

Job Title BS 5950 Portals 

Rev Page 13 of 22 

Sway stiffness from column and rafter stiffness. 

Sub Frame 1: LH Column and Rafter Span 1 

Sh2 - 30165 x ( 10000)2 - -  = 0.01820 
3E1eff.R 3 X 205000 X 2695 1 X lo4 

h 3  - 10000~ 
~- = 0.005 
3E1eff,c  3 X 205000 X 3 1505 X lo4 

16 

1 
0.01820 + 0.00516 Ksub 1 = = 42.8  N/mm 

Sub Frame 2: Internal  Column and Rafter Span 2 

Sh2 - 30165 X(lOOOO)* - -  = 0.01820 
3E1eff.R 3 X 205000 X 26944 X lo4 

- -  h 3  - 10000~ = 0.0805 
3 E',,,., 3 X 205000 X 2020 X lo4 

1 
0.01820 + 0.0805 Ksub 2 = . = 10.1  N/mm 

Nominal  Base  fixity 

External  Column 

1 
(0.0387 + 0.00516) K b  ext = = 22.8  N/mm 

)ate May 2001 

)ate July 2001 

D.3.5 

D.4 
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Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

]QN Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

Internal Column

K. = =1.5N/mmb rn
(0.2106 + 0.0805)

Total Frame Stiffness

= K sub + Kb ext + K sub 2 + Kb ml + Kb ext

= 42.8 + 22.8 + 10.1 +1.5 + 22.8 = 100.0 N/mm

EH 2.711x1000 D.3.5ô =—= =27.1mmfl K2 110.0

A = h = 10000 =1.84
crp 2OOo 200x27.1

Sway mode magnification factor

A
crp = 2.185

Acrpl

2.3.3 Deflections of the "plastic" frame from gravity loads

Loads

The loads applied to the "plastic" frame = (4 — A1)(loads at ULS)

and A1 are taken from the first order plastic analysis

(A,,, — A,,) = (1.122 - 0.957) = 0.165

Slope of rafters a = a'., = a = 6°, giving Cosa' = 0.9945

Service load and imposed load are specified "on plan",

at ULS, = 1.26 + 5.76 = 7.02 kN/m

giving a transverse load on the "plastic frame"

= (A — i)(1v.pian at ULS)Cos2a

= 0.165 x 7.02(0.9945)2 = 1.15 kN/m
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Telephone: (01 344)  623345 
Fax: (01344)  622944 

Two-span Portal Frame 

Client DETR Made  by CMK 

CALCULATION SHEET I Checked by WIS 

Internal Column 

1 
(0.2106 + 0.0805) Kb int = = 1.5  N/mm 

Total Frame Stiffness 

C K  = K sub I + K b  ex1 + K sub 2 +  Kb int + Kb ext 

CK = 42.8 + 22.8 + 10.1 + 1.5 + 22.8 = 100.0  N/mm 

CH - 2.711 x1000 d,,p = - - = 27.1 mm 
ZK2 110.0 

Sway  mode magnification factor 

I&] 
2.3.3 Deflections of the “plastic” frame  from  gravity  loads 

Loads 

The loads applied to the “plastic”  frame = (Ap - A,)(loads at ULS) 

A, and A, are taken from the first order plastic analysis 

= 2.185 

(Ap - A,) = (1.122 - 0.957) = 0.165 

Slope of rafters a, = a? = a = 6 ” ,  giving Cosa = 0.9945 

Service load and  imposed load are specified “on  plan”, 

at ULS, w , , ~ , ~ ~  = 1.26 + 5.76 = 7.02  kN/m 

giving  a  transverse load on the “plastic  frame” 

= (Ap - A , ) ( W , ~ , ~ , ~  at U~s)Cos‘a  

= 0.165  X7.02(0.9945)2 = 1.15  kN/m 

)ate May 2001 

)ate July 2001 

D.3.5 
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Job Title BS 5950 Portals

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: 101344) 623345
Fax: (013441 622944

CALCULATION SHEET

7QN Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

Dead load and self-weight are values "along the slope",

at ULS, Wv slope = 0.84 + 1.12 = 1.96 kN/m

giving a transverse load on the "plastic frame"

=
(Ar,

-
A1)(w55100 at ULS)Cosa

= O.165x1.96x0.866 = 0.32 kN/m

Summing loads from components "on plan" and "along the slope",

w, 1.15 + 0.32 = 1.47 kN/m

Sway A.4.5

This arises due to the rotation of the column without an adjacent hinge.

w S3
First-order end slope of the rafter as a simply supported beam, 8R = 24 EI

Second-order end slope of the rafter, °R2 =
( A 1]

E = 205000 N/mm2

= 29380 cm4

8 = 1.47 x 30165 x 2.185 = 0.06087 radians
24 x 205000 x 29380 x i04

Horizontal deflection of Point B, C, D =

= 10000 x 0.06087 = 608.7 mm

Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:

o wS4 'crpb23 El A -1R crp
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CALCULATION SHEET Checked by 

Two-span Portal Frame 

Made  by 

Dead load and self-weight are values “along the slope”, 

at ULS, w,,,lope = 0.84 + 1.12 = 1.96 kN/m 

giving a transverse load on the “plastic  frame” 

= (A, - A,)(W,,,lope at ULS)COSCX 

= 0.165~1.96~0.866 = 0.32 kN/m 

Summing loads from components “on plan” and “along the slope”, 

wp = 1.15 + 0.32 = 1.47 kN/m 

Sway 

This  arises due to the rotation of  the column without an adjacent hinge. 

First-order  end slope of the rafter as a simply supported beam, @R = 
wp s3 
24 EIR 

wp s3 
ACT Second-order  end slope of the rafter, OR, = - 

24 E‘R [ ‘crp - l) 

E = 205000 N/mm2 

I ,  = 29380 cm4 

1.47 x 301653 em = X 2.185 = 0.06087 radians 
24 X 205000 X 29380 X lo4 

Horizontal deflection of Point B, C, D = he, 

= 10000 x 0.06087 = 608.7 mm 

Mid-span drop 

Deflection  given by value for simply supported beam of span equal  to the 
developed length of the rafters, 

span 1: 

)ate May 2001 

)ate July 2001 

A.4.5 
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Job Title BS 5950 Portals

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: 101344) 623345
Fax: (01344) 622944

CALCULATION SHEET

70N Two-span Portal Frame

Client DETR
Made

by CMK

by WIS

Date

Date

May

July

2001

2001

o = x 1.47 x 30165 x 2.185 = 573.8 mmb2 384 205000 x 29380 x i04

°B2 573.8o = ____ = =577.Omm
apex 0.9945

Span 2: as Span 1

Spread A.4.5

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:

Full span 0spread = 0B2 (Sina1 + Sina2) = 0B (2Sin 6°)

= 573.8(2 x 0.1045) = 120.0mm

Half span 0spread =052 Sin a1 = 573.8 x 0.1045 = 60.0 mm

Span 2: as Span 1

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, O = 0.06087 radians (Sheet 15)

Off-set of the hinge below the rafter, e = 10000 - 9400 = 600 mm

Horizontal deflection of Point M = eO

= 600 x 0.06087 = 36.5 mm

2.3.4 Deflections of the "plastic" frame due to horizontal loads A.4.6

Loads

The unfactored loads applied to the "elastic frame" included the horizontal
loads and were in proportion to the ULS loads, so the additional horizontal
load on the plastic frame = (A,,

- 21)(loads at ULS)
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Silwood Park, Ascot, Berks S1 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET 

-5 7QN I Two-span Portal Frame 

5 x  1.47 x 301654 
205000 x 29380 x lo4 *b2 = 384 X 2.185 = 573.8 mm 

dB* - &apex = - - - 573'8 = 577.0 mm 
cos a 0.9945 

Span 2: as Span 1 

Spread 

This  is  caused by the drop of the angle in  the rafter which is  at the apex in this 
frame. Because this frame  is a symmetrical pitched roof portal, the drop of 
the angle is  the mid-span drop calculated above. 

span 1: 

Full span Sspread = & (Sina, + Sind;) = S, (2Sin 6") 

= 573.8 (2 X 0.1045) = 120.0  mm 

Half span &spread = S,, Sin a, = 573.8 X 0.1045 = 60.0 mm 

Span 2: as Span 1 

Column hinge horizontal displacement 

The hinge occurs  at the underside of  the haunch, which is at a distance from 
the neutral axis of the rafter, causing an additional horizontal displacement. 

Second-order  end slope of the rafter, Om = 0.06087 radians 

Off-set of the hinge below the rafter, e = 10000 - 9400 = 600  mm 

Horizontal  deflection of Point M = eOR 

= 600 x 0.06087 = 36.5  mm 

2.3.4 Deflections of the "plastic" frame due to horizontal  loads 

Loads 

The unfactored loads applied to the "elastic frame" included the horizontal 
loads  and  were in proportion  to the ULS loads, so the additional horizontal 
load on the plastic  frame = (Ap - A,)(loads at ULS) 

)ate May 2001 

late July 2001 

A.4.5 

(Sheet 15) 

A.4.6 
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Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal Frame

Client DETR IMade by CMK

Checked
by WIS

Date

Date

May

July

2001

2001

(2, = (1.122 - 0.957) = 0.165

Slope of rafters a' = = ix = 6°, giving Costx = 0.9945

Sway A.4.6

Total of column forces = 542.2 kN (Sheet 8)

0.5% x of total of column forces (elastic frame) = 0.005x542.2 = 2.7 kN (Sheet 2)

Additional horizontal load on plastic frame

H = 0.165 x 2.7 x 1000 = 447N

For a multi-span frame, the sway deflection is calculated from the sum of the
stiffnesses K for each of the spans:

K= 1 x 1

Sh2 h3 A

3EIR
+

3EI
'crp

1

K = 1 = 1 =45.1
sub 1

s j3 0.0167 + 0.0055

3EIR
+

K = 1 1 =21.5
Sh2 h3 0.0167 + 0.0297

3EZR

+

Total Frame Stiffness

K5 K sub i + K sub 2

= 45.1 + 21.5 = 66.6 N/mm

Second-order least sway deflection of the column top

H 0.447x1000= = __________ x 2.185 = 14.7 nini2 K5 66.6
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Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01  344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET Checked by 

Two-span  Portal  Frame 

Made by 

(Ap - A,) = (1.122 - 0.957) = 0.165 

Slope of rafters a, = q = a = 6", giving Cosa = 0.9945 

Sway 

Total of column  forces = 542.2 kN 

0.5% x of total of column  forces  (elastic  frame) = 0.005~542.2  = 2.7 kN 

Additional  horizontal load on  plastic  frame 

H = 0.165 X 2.7 X 1000 = 447  N 

For  a  multi-span  frame, the sway deflection  is  calculated  from the sum of the 
stiffnesses K for  each of the spans: 

K, = 
1 

X 
1 

S h 2  

- 1 1 
Ksub 1 - 

- 

0.0167 + 0.0055 
= 45.1 

S h 2  

1 1 
%ub 2 = 

- 

0.0167 + 0.0297 
= 21.5 

S h 2  

Total  Frame Stiffness 

K sub I + K sub 2 

X s  = 45.1 + 21.5 = 66.6 N/mm 

Second-order least  sway deflection of the  column  top 

)ate May 2001 

)ate July  2001 

A.4.6 

(Sheet 8) 

(Sheet 2) 
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Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: 1013441 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

Mid-span drop

Second order sagging deflection of a straight rafter:

ML2 A
= r crp where M = E H. h1sm2

16EIR 2crp
— 1

.H is the proportion of the horizontal force carried by each sub frame
calculated as a proportion of the stiffness K2.

Sub frame 1:

Drop in the apex of rafter span 1 due to horizontal load.

o. = 0.293 x 1000 x 10000 (30165)2 x 2.185 = 6.1 mmsrn2
16 x 205000 x 29380x i04

Sub frame 2:

Drop in the apex of rafter span 2 due to horizontal load.

o = 0.154 x 1000 x 10000 (30165)2 x 2.185 = 3.2 mmsm2
16 x 205000 x 29380x i0

Spread

Span 1:

Full span spread =
Osm2 (Sina'1 + Sina'2) = 6.1 (Sin 6° + Sin 6°)

= 6.1 (0.1045 + 0.1045) = 1.3mm

Half span spread = 0 (Sina') = 6.1 (Sin 6°)

= 6.1 (0. 1045) = 0.6mm

Span 2:

Full span spread = sm2 (Sina'1 + Sinz2) = 3.2 (Sin 6° + Sin 6°)

= 3.2 (0. 1045 + 0.1045) = 0.7mm

Half-span spread = sm2 (Sina'1) = 3.2 (Sin 6°)

= 3.2 (0.1045) = 0.3mm
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CALCULATION SHEET I Checked by WIS 

Mid-span drop 

Second  order  sagging  deflection of a  straight  rafter: 

ML," lcrp 
L 2  = where M = Z Hi hi 

16E1, Acrp - 1 1 
Hi is the proportion of the horizontal  force  carried by each sub  frame 
calculated  as  a  proportion of the stiffness KZ.  

Sub frame 1: 

Drop in the apex of rafter span 1 due to  horizontal  load. 

... ?m2 = x 2. 185 = 6.1 mm 0.293 x 1000 x 10000 (30165)2 
16 X 205000 X 29380 X IO4 

Sub frame 2: 

Drop in the apex of rafter  span  2  due  to  horizontal  load. 

... *m2 = x 2. 185 ~ 3.2 mm 0.154 x 1000 x 10000 (30165)2 
16 X 205000 X 29380X lo4 

Spread 

span 1: 

Full span  spread = SsmZ (Sinal + SinaJ = 6.1 (Sin 6" + Sin 6") 

= 6.1 (0.1045 + 0.1045) = 1.3 mm 

Half span  spread = 6 (Sina,) = 6.1 (Sin 6") 

= 6.1 (0.1045) = 0.6 mm 

span 2: 

Full  span  spread = 6 (Sina, + SinaJ = 3.2 (Sin 6" + Sin 6") 

= 3.2 (0.1045 + 0.1045) = 0.7 mm 

Half-span  spread = 6 (Sinal) = 3.2 (Sin 6") 

= 3.2 (0.1045) = 0.3 mm 

168 
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Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

2.4 Axial forces for the energy calculation

The total of the axial forces in the columns is not affected by second-order
effects because of vertical equilibrium, so P2 = P1 which is taken as the
mid-height value calculated in 2.2 above.

Column Forces

Span 1:

LH col: take mid-height P2 = 127.1 kN

RH col: take mid-height P2 = 287.4 kN (Sheet 7)

Span 2:

RH col: take mid-height P2 = 127.7 kN

Rafter Forces

The rafter axial forces are affected by the drop of the rafters at mid-span.

Span 1:

Total mid-span drop = 845.7 mm

Increase in P2 = {1/[1(ôa i'hla)]l} = {1/[1—(845.7/11577)J — 1}

= 0.079

LH rafter: take mid-length P1 = 52.9 kN

Mid-span axial== 46.0 (sheet 5), giving Pzi increase = 0.079x46.0 = 3.6 kN

P, = 52.9 + 3.6 = 56.5 kN

RH rafter:take mid-length P1 = (62.0 + 48.2)/2 = 55.1 kN

Mid-span axial = 48.2(Sheet 5). giving Pzi increase = 0.079x48.2 = 3.8 kN

P2 = 55.1 + 3.8 = 58.9 kN

Span 2:

Total mid-span drop = 831.5 mm
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Subject Second-order  Worked  Example: 
Silwood  Park,  Ascot,  Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 

Two-span Portal  Frame 

Client DETR M a d e  by CMK 

CALCULATION SHEET l Checked by WIS 

2.4 Axial  forces for the energy  calculation 

The total of the axial  forces in the columns  is not affected by second-order 
effects  because of vertical  equilibrium, so Pz = P,  which is taken  as the 
mid-height  value  calculated in 2.2  above. 

Column Forces 

span 1: 

LH col:  take  mid-height Pz = 127.1 kN 

RH col:  take  mid-height Pz = 287.4 kN 

span 2: 

RH col:  take  mid-height Pz = 127.7 kN 

Rafter Forces 

The  rafter  axial  forces  are  affected by  the drop of  the rafters  at  mid-span. 

Span 1: 

Total  mid-span  drop = 845.7 mm 

Increase in P2 = {l/[l-(da  /ha)]-l} = {1/[1-(845.7/11577)] - l}  

= 0.079 

LH  rafter: take mid-length P ,  = 52.9 kN 

Mid-span axial=  46.0 (sheet 5), giving PA increase = 0 .079~46 .0  = 3.6 kN 

P2 = 52.9 + 3.6 = 56.5 kN 

RH  rafter:take  mid-length P, = (62.0 + 48.2)/2 = 55.1 kN 

Mid-span  axial = 48.2(Sheet 5 ) ,  giving PA increase = 0 . 0 7 9 ~ 4 8 . 2  = 3.8 kN 

Pz = 55.1 + 3.8 = 58.9 kN 

span 2: 

Total  mid-span  drop = 83  1.5 mm 

)ate May 2001 

)ate July  2001 

(Sheet 7) 
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CALCULATION SHEET

70N Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

Date

Date

May

July

2001

2001

Increase in P2 = {1/[1—(o /ha)]1} = {1I[1(831.5/11577)1 I}

= 0.077

LH rafter: take mid-length P1 (62.0 + 48.3)/2 = 55.2 kN

Mid-span axial 48.3, giving Pzl increase = 0.077x48.3= 3.7 kN

P2 = 55.2 + 3.7 = 58.9 kN

RH rafter: take mid-length P = (60.1 + 46.3)/2 = 53.2 kN

Mid-span axial = 46.3, giving PJ increase = 0.077x46.3 = 3.6 kN

P2 = 53.2 + 3.6 = 56.8 kN

2.5 Second-order Energy Summation

a>"

The following spreadsheet shows the second order energy summation.
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Job No: CDS 139 Rev Page 20 of 22 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01  344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET 

Two-span Portal Frame 

Client DETR Made by CMK 

Checked by WIS 

~ Increase in Pz = {l / [ l - (6a /ha)]-l} = {1/[1-(831.5/11577)] - l} 

= 0.077 

LH rafter:take  mid-length P,  = (62.0 + 48.3)/2 = 55.2 kN 

Mid-span axial = 48.3, giving P A  increase = 0.077X48.3=  3.7 kN 

P2 = 55.2 + 3.7 = 58.9 kN 

RH rafter:take  mid-length P ,  = (60.1 + 46.3)/2 = 53.2 kN 

Mid-span  axial = 46.3, giving P A  increase = 0.077X46.3 = 3.6 kN 

P2 = 53.2 + 3.6 = 56.8 kN 

2.5 Second-order Energy Summation 

Deflected 

position 

The following  spreadsheet  shows the second order  energy  summation. 

)ate May  2001 

)ate July 2001 
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Job Title BS 5950 Portals

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344> 623345
Fax: (01344> 622944

CALCULATION SHEET

Two-span Portal Frame

Client DETR

Made

by CMK

Checked by WIS

IDate

Date

May

July

2001

2001

Element for evaluation of Pc*phi*s*d(phi)

X-AXIS DEFLECTIONS
Deflections from the elastic' frame
dxa
dxb
(dxb - dxa)
Deflections from the 'plastic' frame
From gravity loads
Sway of top of elastic column
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb
(dxb - dxa)
Column hinge horizontal displacement
dxa
dxb
(dxb - dxa)
From horizontal loads
Sway
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb

AB BC CD ED OF FG dG Hd

0.0 -21.1 6.0 00 32.9 58.7 84.5 00
-21 1 60 329 329 587 84 5 845 84 5
-21.1 27.1 27.0 32.9 25.7 26.9 0.0 84.5

00 608.7 6087 00 6087 6087 6087 0.0
6087 608.7 608.7 6087 6087 608.7 6087 608.7
608.7 0.0 0.0 608.7 0.0 0.0 0.0 608.7

0.0 0,0 60.0 0.0 120.0 179.9 239.9 239.9
0.0 60.0 1200 1200 179.9 239.9 239.9 0.0
0.0 60.0 60.0 120.0 60.0 60.0 0.0 -239.9

00 0.0 0.0 00 00 0.0 365 00
00 00 0.0 0.0 00 0.0 00 36.5
0.0 0.0 0.0 0.0 0.0 0.0 -36.5 36.5

00 147 14.7 0.0 147 14.7 14.7 0.0
14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
14.7 0.0 0.0 14.7 0.0 0.0 0.0 14.7

06 0.0 13
1.3 1.3 1.6
0.6 1.3 0.3

0.0
0.0
0.0

00
06
0.6

1.6 1.9 00
1.9 1.9 1.9

0.3 0.0 1.9(dxb - dxa)
ITotal of (dxb-dxa) at collapse 602.2 87.7 87.6 777.5 86.0 86.2 -36.5 506.41

Y-AXIS DEFLECTIONS
Deflections from the "elastic" frame
dya 0.0 0.7 2627 0.0 1.9 251.4 0.7 0.0
dyb 0.7 2627 1.9 1.9 251.4 0.7 0.7 0.7
(dyb - dya) 0.7 262.0 -260.8 1.9 249.5 -250.7 0.0 0.7
Deflections from the "plastic" frame
Mid-span drop from gravity loads
dya 0.0 00 577.0 0.0 0.0 577.0 0.0 0.0
dyb 0.0 577.0 0.0 0.0 577.0 0.0 00 0.0
(dyb - dya) 0.0 577.0 -577.0 0.0 577.0 -577.0 0.0 0.0
Mid-span drop from horizontal loads
dya 0.0 0.0 6.1 0.0 0.0 3.2 0.0 00
dyb 0.0 6.1 0.0 0.0 3.2 0.0 0.0 00
(dyb - dya) 0.0 6.1 -6.1 0.0 3.2 -3.2 0.0 0.0
ITotal of (dyb-dya) at collapse 0.7 845.0 -843.8 1.9 829.6 -830.8 0.0 0.71

SHORTENING
psi (angle from X axis) 90.0 6 0 -6.0 900 6.0 -60 90.0 90.0
[(dxb - dxa) at collapse]*Sin(psi) 602.2 9.2 -9.2 777.5 9.0 -9.0 -36.5 506.4
[(dyb - dya) at collapsejCos(psi) 00 8404 -839 1 0.0 8250 -826.3 0.0 0 0
phi * sat collapse 6022 849.5 -848 3 7775 834.0 -835.3 -36.5 506.4
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 2.031 2.031 1.740
Shortening = phi*s*d(phi) (modulus)

AXIAL FORCES

602.2 849.5 748.9 895.0 960.1 1696.7 74.2 881.31

Pc for columns and rafters at ULS 127.1 52.9 55.1 2874 55.2 53.2 127.7 1277
Total midspan drop 845.7 845.7 831.5 831 5
Midspari height 11577 11577 11577 11577
Increase rafter mispan axial by {1/(1-drop/height) - 1) 0.079 0 079 0.077 0.077
Midspan axial 46.0 482 48.3 46.3
Increase in rafter axial 3.6 3 8 3.7 36
Design axial 127.1 56.5 58.9 287.4 58.9 56.8 127.7 127.7
Incremental energy = Pc*phi*s*d(phi) 76.5 48.0 44.1 257.2 56.5 96.3 9.5 112.51 Sum = 701

WORK DONE IN ROTATING HINGES
Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd

MprA 00 0.0 404.0 0.0 0.0 404.0 454.0 0.0

MprB 0.0 404.0 404.0 404.0 404.0 0.0 0.0 454.0
MprA + MprB 00 404.0 808.0 404.0 404.0 404 0 454.0 454.0
Incremental roth = d(phi) from mechanism

IMpr*d(phi)
1 000 1 000 0.883 1151 1.151 2031 2.031 1.740

0.0 404.0 713.3 4650 465.0 820.7 922.2 790.11 Sum = 4580

Factor on lambda_p 0.847
lambda p from first-order analysis 1.122

Iambda_M 0.950
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Subject Second-order Worked Example: 
Silwood Park, Ascot, Berks SL5 7QN Two-span Portal Frame 
Telephone: (01 344)  623345 
Fax: (01 344) 622944 Client DETR Made  by CMK Date May 2001 

CALCULATION SHEET Checked  by WIS Date July 2001 

Element  for  evaluation of  Pc'phi*s'd(phi)  AB  BC CD ED DF FG dG Hd 

X-AXIS DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dxa 0 0  -21  1 6.0 0 0  329  587  845 0 0  
dxb -21  1 60   329   329   587  84 5 845 84 5 
(dxb - dxa) -21.1 27.1 27.0 32.9 25.7 25.9 0.0 84.5 
Deflections  from  the  "plastic"  frame 
From  gravity  loads 
Sway of  top  of  elastic  column 
dxa 0 0  608.7 6087 0 0  6087  6087  6087 0 0  
dxb 6087 608.7 608.7 6087 608 7 608.7 6087 608.7 
(dxb - dxa) 
Spread 

608.7 0.0  0.0 608.7 0.0 0.0 0.0 608.7 

dxa 0 0   0 0  60.0 0 0  1200 179.9  239.9 2399 
dxb 0 0  600  1200  1200 179.9  239.9  239.9 0 0 
(dxb - dxa) 0.0 60.0  60.0 120.0 60.0 60.0 0.0 -239.9 
Column  hinge  horizontal  displacement 
dxa 
dxb 

0 0  0.0 0.0 0 0  0 0  0.0 365 0 0  

(dxb - dxa) 
0 0 0 0 0.0 0.0 0 0 0.0 0 0 36.5 
0.0 0.0 0.0 0.0 0.0 0.0 -36.5 36.5 

Sway 
From  horizontal  loads 

dxa 
dxb 

0 0  147 14.7 0.0 14 7 14.7  14.7 0.0 
147 147  147 14.7 147 147 14.7 147 

(dxb - dxa) 14.7 0.0 0.0 74.7 0.0 0.0 0.0 14.7 
Spread 

dxb 
dxa 0.0 0 0  0 6  0.0 1 3  1.6 1 9  0 0  

0.0 0 6   1 3  1.3  1.6  1.9 1.9 1.9 

ITotal  of  (dxb-dxa)  at  collapse 
(dxb - dxa) 0.0 0.6 0.6 1.3 0.3 0.3 0.0 1.9 

602.2 87.7 87.6 777.5 86.0 86.2 -36.5 506.41 

Y-AXIS  DEFLECTIONS 

dya 
dyb  0.7  262 7  1.9 1.9  251.4  0.7  0.7 0 7 
(dyb - dya) 

Deflections  from  the  "elastic"  frame 
0.0 0.7 262 7 0.0 1  9 251.4 0.7 0.0 

Deflections  from  the  "plastic"  frame 
Mid-span  drop  from  gravity  loads 

0.7 262.0 -260.8 1.9 249.5 -250.7 0.0 0.7 

dya 
dYb 0.0 577.0 0.0 0.0 577.0 0.0 0 0 0.0 
(dyb - dya) 0.0 577.0 -577.0 0.0 577.0 -577.0 0.0 0.0 

dya 0.0 0.0 6.1 0.0 0.0 3.2 0.0 0 0 
dyb 0.0 6.1 0.0 0.0 3.2 0.0 0.0 0 0 

0.0 0 0 577.0 0.0 0 0 577.0 0.0 0.0 

Mid-span  drop  from  horizontal  loads 

(dyb - dya) 
ITotal of (dyb-dya)  at  collapse 

0.0 6.1 -6.1 0.0 3.2 -3.2 0.0 0.0 
0.7 845.0 -843.8 1.9 829.6 -830.8 0.0 0.71 

SHORTENING 
PSI (angle  from X axis) 
[(dxb - dxa) at collapse]'Sin(psi) 
[(dyb - dya)  at collapse]'Cos(psi) 
Dhl * S at collaDse 

602 2 9  2 -9.2 777.5 9.0 -9 0 -36.5 506.4 
90.0 6 0 -6.0 900 6.0 -6 0 90.0 90.0 

602 2 849.5 -848 3 777 5 834.0 -835.3 -36.5 506.4 
0 0 8404 -839 1 0.0 825 0 -826.3 0.0 0 0 

IShortening = phi*s*d(phi)  (modulus) 
incremental  rotn = d(phi) from mechanism 

602.2 849.5 748.9 895.0 960.1 1696.7 74.2 881.31 
1.000  1.000 0.883 1.151  1.151  2.031  2.031  1.740 

AXIAL  FORCES 
Pc for columns and  rafters at ULS 127.1  52.9  55.1 2874 55.2  53.2  127.7  127 7 
Total mldspan  drop  845.7 845.7 831.5 831 5 
Mldspan helght 11577  11577  11577 11 577 
Increase rafter  mlspan  axial by {l/(l-drop/height) - 1) 0.079 0 079  0.077  0.077 
Mldspan axial 46.0 48 2 48.3  46.3 
Increase in rafter  axial 3.6 3 8 3.7 3  6 
Deslgn axlal  127.1 56.5 58.9 287.4  58.9  56.8  127.7  127.7 
Incremental  energy = Pc'phi's'd(phi) 76.5 48.0 44.1 257.2 56.5  96.3 9.5 112.51 Sum = 

WORK DONE IN ROTATING HINGES 
Element for  evaluating  Mprd(phi) 
M prA 
MprB 
MprA + MprB 
Incremental rotn = d(phi)  from  mechanism 
Mpr'd(phi) 

AB Ea ab bD DC cG dG Hd 
0 0 0.0 404.0 0.0 0.0 404.0 454.0 0.0 
0.0 404.0 404.0 404.0 404.0 0.0 0.0 454.0 
0 0 404.0 808.0 404.0 404.0 404 0 454.0 454.0 

1000 1000 0.883 1151 1.151 2031 2.031 1.740 
0.0 404.0 713.3 465.0 465.0 820.7 922.2 790.1) Sum = 

701 

4580 

Factor on lambda-p 

lambda  M I 0.950 
1.122 lambda p  from  first-order analysis 
0.847 
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Job Title BS 5950 Portals

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal Frame

Client DETR

Made

by CMK Date May 2001

Checked by WIS Date July 2001

2.6 Load factor at failure, A0,

EP2bsdq =7Olçb

Mprdb =4580q5

E (P2 q1i s dj5) A.2.2A/A = 1—M P

E(Mprdq5)

/ = - ( 701 = 0.847
M p 4580q

= 0.847 x = 0.847 x 1.122 = 0.950

2M < 1 .0, so the frame has failed the check for in-plane stability.

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The "hand" method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that A1 were closer to A.

1 72
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Silwood Park, Ascot, Berks SL5 70N 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 

CALCULATION SHEET 

Job No: CDS 139 Page 22 of 22 Rev 

Job  Title BS 5950 Portals 

Subject Second-order Worked Example: 
Two-span Portal Frame 

Made  by 

Checked  by 

2.6 Load factor  at failure, A,,, 

Z: P2 q5sdq5 = 701 q5 

Z MP‘ dq5 = 4580 q5 

dM f A p  - 

- [l  - ( 701 4 ) ]  = 0.847 
4580 0 

A M  = 0.847 X A, = 0.847 X 1.122 = 0.950 

A, < 1.0, so the frame has failed the check  for in-plane stability. 

The above  shows how  the second-order effects have caused a major reduction 
in capacity of the frame due to in-plane instability effects.  The “hand” method 
tends to be  conservative, so analysis by another method might demonstrate that 
the reduction in capacity is not so great. 

The analysis  above would be less conservative if  the stiffness of  the haunches 
had been included in all  the stiffness calculations. It  would also be more 
economical if the frame were proportioned so that A, were closer to A,. 

)ate May 2001 

)ate July 2001 

A.2.2 

1 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: 101344) 623345
Fax: 101344) 622944

CALCULATION SHEET

JON Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK IDate May
Checked by WIS

Date July

2001

2001

1. INPUT FROM FIRST-ORDER ANALYSIS

1 .1 General Arrangement

Miss Frame

Hit Frame

Spans = 30 m

a1 = 6°

30
Developed length of rafter =

cos 6°
= 30.165 m

Height of column from base to Neutral Axis of rafter = 10.0 m

1 73

Span 1 Span 2

Angle of rafters:

Span 1 Span 2
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Job No: CDS139 Page 1 of 41 

Job Title BS 5950 Portal 

Subject Second-order Worked Example: 
Silwood Park, Ascot, Berks SL5 7QN Two-span Portal with Hit/Miss  Internal  Columns. 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET Checked by 

Client DETR Made  by CMK Date May 2001 

WIS Date July 2001 

1. INPUT  FROM FIRST-ORDER ANALYSIS 

1.1 General Arrangement 

Miss Frame 

Hit Frame 

Span 1 Span 2 

Angle  of  rafters: a, = o+ = 6" 

Spans = 30 m 

30 
cos 6" 

Developed  length of rafter = - - - 30.165 m 

Height of column  from base to  Neutral  Axis of rafter = 10.0 m 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

1.2 Loading

Miss Framewwwww

Valley beam load

Dead = 0.100 x 6.000 X 1.4
Service = 0.150 x 6.000 X 1.4
Imposed 0.600 x 6.000 x 1.6
Self Weight = 80 x 10-2 x 1.000 x

Valley beam factored load

= 0.840kN/m
= 1.260kN/m
= 5.760kN/m

1.4 = 1.l2OkN/m

= 300kN

174

along slope
on plan
on plan
along slope

NHF

Hit Frame

Loading
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Job No: CDS139 Page 2 of 41 Rev A 

Subject Second-order  Worked  Example: 

Fax: (01 344)  622944 

CALCULATION SHEET Checked  by 

Client DETR Made  by 

Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01 344)  623345 

Two-span  Portal  with  Hit/Miss  Internal  Columns. 
I 

1.2 Loading 

Miss Frame 

NHF  NHF  NHF 

Hit Frame ' Valley  beam load 

NHF NHF 

Loading 

Dead = 0.100 X 6.000 x 1.4 
Service = 0.150 x 6.000 X 1.4 
Imposed = 0.600 X 6.000 X 1.6 
Self  Weight = 80 X X 1.000 X 

Valley beam factored load 

I""' 
0.840  kN/m along  slope 
1.260  kN/m on plan 
5.760  kN/m on plan 
1.120  kN/m along slope 

300 kN 

)ate May 2001 

)ate July 2001 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Stiwood Park, Ascot, Berks SL5
Telephone: (01344f 623345
Fax: (013441 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR 'Made by CMK

Checked by WIS

Date May

Date July

2001

2001

MISS FRAME

1.3 INPUT FROM FIRST-ORDER ANALYSIS

1.3.1 General Arrangement

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism for the Miss Frame

175

The  Steel 
Construction 
Institute 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 

lob No: CDS139 IPage 3 of 41 lRev A I 
Job  Title BS 5950 Portal 

Subject Second-order  Worked Example: 
Two-span Portal with Hit/Miss Internal Columns. 

Made  by 

CALCULATION SHEET Checked by WIS 

MISS FRAME 

1.3 INPUT  FROM FIRST-ORDER ANALYSIS 

1.3.1 General Arrangement 

The values of incremental rotation of  the hinges are taken from the first-order 
collapse mechanism.  These are the incremental rotations as used to calculate 
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work) 
method. 

The  second-order analysis uses the relative magnitude of  the instantaneous 
rotations, so the absolute magnitude of each rotation does not affect the 
calculations. 

Where the analysis has been performed by methods other than the Rigid-Plastic 
method (e.g. by  the Semi-Graphical method), the incremental rotations can  be 
deduced  from the geometry of  the frame  and the position of  the hinges. It is 
not necessary  to repeat the calculation of the collapse factor by the 
Rigid-Plastic method. 

Failure Mechanism for the Miss  Frame 

l a te  May 2001 

l a te  July 2001 
1 
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Find

PtA

Pt B

Pt C

Pt D

Pt E

Pt F

PtG

PtH

Pt a

Pt c

Pt d

= (0.0, 0.0)

= (0.0, 10.0)

= (15.0, 11.577)

= (30.0, 10.0)

= (30.0, 10.0)

(45.0, 11.577)

= (60.0, 10.0)

= (60.0, 0.0)

= (10.851, 11.141)

= (32.977, 10.313)

= (60.0, 9.400)

The Steel
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Institute

Job No: CDS139
IPage

4 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Stlwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR 'Made by CMK

Checked by WIS

Date May

Date July

2001

2001

Node Locations

-. (0.0, 0.0)

-, (0.0, 10.0)

-' (15.0, {10.0 + 15.OTan6})

-. (30.0, 10.0)

-. (30.0, 10.0)

-, ({30.0+15.0}, {10.0 + 15.OTan6})

-' (60.0, 10.0)

-' (60.0, 0.0)

-' (10.9llCos6, {10.0 + 10.9llSin6})

-. ({30.0+2.993Cos6}, {10.0 + 2.993Sin6})

-. (60.0, 9.400)

Hinge Rotations

Taking the instantaneous rotation about A as 8

(x -xei@ = a A1 =0.567
E A

(XE—X)

V -Y
y = tan' d C = 1.935

Xd-XC

dY Cos(y) + dX Sin(y)
°dc'1°A = C C = 0.077

cd 8A

dX
= _______ = 1.229

d-H) 8A
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Job  Title BS 5950  Portal 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks  SL5 7QN Two-span Portal with HitIMiss  Internal  Columns. 
Telephone: (01 344)  623345 
Fax: (01 344)  622944  IClient DETR IMade  by CMK 

CALCULATION SHEET I Checked by WIS 

Find  Node Locations 

Pt A - (0.0, 0.0) 

Pt B - (0.0, 10.0) 

Pt C - (15.0,  (10.0 + 15.0Tan6)) 

Pt D + (30.0, 10.0) 

Pt E - (30.0, 10.0) 

Pt F - ((30.0+15.0}, (10.0 + 15.0Tan6)) 

Pt G - (60.0, 10.0) 

Pt H - (60.0, 0.0) 

Pt a - (10.911 Cos6,  (10.0 + 10.911Sin6)) 

Pt  c - ((30.0+2.993Cos6}, (10.0 + 2.993Sin6)) 

Pt  d - (60.0,  9.400) 

Hinge Rotations 

Taking the instantaneous  rotation  about A as 8 

= (0.0, 0.0) 

= (0.0, 10.0) 

= (15.0,  11.577) 

= (30.0, 10.0) 

= (30.0,  10.0) 

= (45.0,  11.577) 

= (60.0,  10.0) 

= (60.0, 0.0) 

= (10.851,  11.141) 

= (32.977,  10.313) 

= (60.0, 9.400) 

y = tan-' [ ] = 1.935 

'd - ' c  

"d - "c 

dYc Cos( y) + dXc Sin( y) 

cd 8, 
edcl eA = = 0.077 

edHleA = dxd = 1.229 
'(d-11) 'A 

late May 2001 

late July 2001 

176 



1 .4 Axial forces at ULS from first-order analysis

Span 1

LII column:

LH rafter:

RH rafter:

Span 2

LH rafter: at column

RH rafter: at column

RH column: at base

Notional Horizontal Forces

Span 1:

External Column

0.5% x 127.2 = 0.636 kN

Span 2:

External Column

0.5% x 127.7 = 0.638 kN

The Steel
Construction
Institute

Job No: CDS139 Page 5 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR Made by CMK Date May 2001

Checked by WIS Date July 2001

at base

at column

at column

= 132.0 kN,

= 60.0 kN,

= 62.1 kN,

at haunch

at apex

at apex

= 122.4 kN

= 46.2kN

= 48.4kN

= 48.3kN

= 46.3kN

= 122.9 kN

= 62.lkN,

= 60.1 kN,

= 132.5 kN,

at apex

at apex

at haunch

Cl 2.4.2.4

0 kN

1 .5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1 :2000 Annex 1.2. These
may be taken from section tables.

1 77
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Institute 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

L 

,Job No: CDS139 Page 5 of 41 

ISubiect Second-order  Worked  Example: 

Job Title BS 5950  Portal 

Rev A 

Two-span  Portal  with  Hit/Miss  Internal  Columns. - 
Client DETR I Made  by CMK 

CALCULATION SHEET Checked by WIS 

1.4 Axial forces at ULS  from first-order  analysis 

span l 

LH column:  at base 

LH rafter:  at  column 

RH rafter:  at  column 

span 2 

LH rafter:  at  column 

RH  rafter:  at  column 

RH  column:  at base 

Notional  Horizontal  Forces 

span l: 

External  Column 

0.5% x 127.2 = 0.636 kN 

Span 2: 

External  Column 

0.5% x 127.7 = 0.638 kN 

= 132.0 k N ,  at  haunch = 122.4 kN 

= 60.0 k N ,  at  apex = 46.2 kN 

= 62.1 kN, at  apex = 48.4  kN 

= 62.1 kN, at  apex = 48.3 kN 

= 60.1 k N ,  at  apex = 46.3 kN 

= 132.5 k N ,  at haunch = 122.9 kN 

- + 
0.7 kN 0 kN 0.7 kN 

-+ 

* *r 

1.5 Reduced Plastic Moments  at  ULS  from first-order  analysis 

Use  the reduced  moment  capacity  for the sections  to  account  for the co-existent 
axial force,  calculated in accordance  with BS5950-1:2000 Annex 1.2.  These 
may be taken  from  section  tables. 

l a te  May 2001 

l a te  July 2001 

Cl 2.4.2.4 
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4r

For the axial forces in this frame

rafters

external columns =

1.6 Load factor at formation of

= 0.960

Py

under this load case

404 kNm

454 kNm

the first hinge, A1

(from the frame analysis output)

1 .7 Plastic collapse factor, 4

= 1.12

457x 191

457x 191

Deflections of frame at A1

= - 35.7 mm ôyB

11.3 mm ôyC

13.1 mm
ÔYD

36.4 mm

59.6 mm

x 74 UB: I( = 33320 cm4

x 67 UB: I, = 29380 cm4

(formation of the first hinge)

= 0.6mm

= 236.7 mm

= 3.4mm

= 225.4 mm

= 0.6mm

= (132.0 + 122.4)/2

= (60.0 + 46.2)/2

(62.1 + 48.4)/2

The Steel
Construction
Institute

Job No: CDS139 Page 6 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

(from the frame analysis output)

1 .8 Member inertias, I,

External columns:

Rafters:

1.9

xB

oxc

=

ÔXF
=

oX0 =

2. SECOND-ORDER ANALYSIS

2.1 Axial forces in members

Span 1

LII col: take mid-height uLS

LH rafter: take mid-length ULS

RH rafter: take mid-length ULS

= 127.2 kN

= 53.1 kN

= 55.3 k
178
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Institute 

Job No: CDS139 

Job Title BS 5950 Portal 

Page 6 of 41 Rev A 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot,  Berks SL5 7 0 N  
Telephone: (01 344)  623345 
Fax: (01344)  622944 t Client DETR Ifblade by CMK I[ 
CALCULATION SHEET Checked by WIS 

M r x  ~y S r x  

For the axial  forces in this frame  under  this load case 

Mpr rafters = 404  kNm 

Mpc external  columns = 454 kNm 

1.6 Load factor at formation of  the first  hinge, A, 

A, = 0.960  (from the frame analysis output) 

1.7 Plastic  collapse factor, A, 

A, = 1.12 (from the frame analysis output) 

1.8 Member inertias, I ,  

External  columns: 457x 191 X 74 UB: I ,  = 33320 cm4 

Rafters: 457x 191 x 67 UB: I ,  = 29380 cm4 

1 .9  Deflections  of  frame at A, (formation of the first hinge) 

S,, = - 35.7 mm Sy, = 0.6 mm 

S,, = - 11.3 mm d,, = 236.7 mm 

S,, = 13.1  mm dyD = 3.4 mm 

S,, = 36.4 mm SyF = 225.4 mm 

S,, = 59.6 mm dyG = 0.6 mm 

2. SECOND-ORDER ANALYSIS 

2.1 Axial forces in members 

span 1 

LH col: take  mid-height P,,, = (132.0 + 122.4)/2 = 127.2 kN 

LH rafter:  take  mid-length P,,, = (60.0 + 46.2)/2 = 53.1 kN 

RH rafter:  take mid-length PuLs = (62.1 + 48.4)/2 = 55.3 kN 

)ate May  2001 

)ate July 2001 
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Job No: CDS139
IPage

7 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Sllwood Park, Ascot, Berks SL5 70N
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Span 2

LH rafter: take mid-length ULS = (62.1 + 48.3)/2 = 55.2 kN

RH rafter: take mid-length ULS = (60.1 + 46.3)12 = 53.2 kN

RH col: take mid-height ULS = (132.5 +122.9)/2 = 127.7 kN

2.2 Bending Deflections of the "elastic" frame A.3.2

2.2.1 Stiffness reduction factors allowing fore P.6 effects

Columns

The stiffness of each external column differs from the stiffness of the internal
column. Therefore the reduction in frame stiffness is calculated from the sum
of the ULS loads in the columns and the sum of the critical loads of the
columns.

Sum of columns uLs, EPULS = 127.2 + 127.7 = 254.9 kN

External columns: I, = 33320 cm4, h = 10000 mm, a = 1.7

cr = 7r2EJ/(a'h)2 = n2x205000x33320x104/(1.7X10000)2 = 2333 kN

Sum of columns cr, cr = 2333 + 2333 = 4666 kN

(1 - ULS 1cr) = (1 - 254.9/4666) = 0.945

1/(1 — ULS iPcr) = 1.058

Rafters

Span 1:

Average ULs = (53.1 + 55.3)12 = 54.2 kN

= 29380 cm4, L = 30165mm, a = 1.0

Pcr= rc2EI/(a'L)2 = rc2x205000X29380X104/(1.0X30165)2 = 653kN

('—PULS 'Pcr) = (1 — 54.2/653) = (1 — 0.083) = 0.917

1 79

L 

span 2 

LH rafter: take mid-length PuLs = (62.1 + 48.3)/2 = 55.2 kN 

RH rafter: take mid-length PuLs = (60.1 + 46.3)/2 = 53.2 kN 

RH col: take mid-height P,,  = (132.5  +122.9)/2 = 127.7 kN 

2.2 Bending Deflections of the  "elastic"  frame 

2.2.1 Stiffness  reduction  factors  allowing  fore P.6 effects 

Columns 

The stiffness of each external column  differs  from the stiffness of the internal 
column.  Therefore the reduction in  frame stiffness is calculated from the sum 
of the ULS loads in the columns  and the sum of  the critical loads of  the 
columns. 

Sum of columns PuLs, ZP,,, = 127.2 + 127.7 = 254.9 kN 

External columns: Z, = 33320  cm4,  h = 10000  mm, a = 1.7 

P,, = n2EZ/(uh)2 = n2 X 205000 X 33320 X lo4/(  1.7 X 10000)2 = 2333 kN 

Sum of columns P,,, Z P  = 2333 + 2333 = 4666 kN 

(1 - ZPuLs /ZPcr) = (1 - 254.9/4666) = 0.945 

1/(1 - ZPuLs /CP,,) = 1.058 

Rafters 

span 1: 

Average PuLs = (53.1 + 55.3)/2 = 54.2 kN 

l, = 29380 cm4, L = 30165mm, a = 1.0 

P,, = .~C*EZ/(~L)~ = ~~x205000X29380X 104/(1.0X30165)2 = 653 kN 

(l-PuLs /Pcr) = (1 - 54.2/653) = (1 - 0.083) = 0.917 

)ate May 2001 

)ate July 2001 

A.3.2 

The  Steel 
Construction 
Institute 

Job Title BS 5950 Portal 

Job No: CDS139 Page 7 of 41 Rev A 

Subject Second-order  Worked  Example: 
Silwood  Park,  Ascot,  Berks SL5 7QN 
Telephone: (01 344)  623345 

Two-span Portal with  Hit/Miss Internal Columns. 
Fax: (01 344)  622944 

Client DETR Made by CMK C 

CALCULATION SHEET Checked by WIS [: 
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Institute

Job No: CDS139
IPage

8 of 41
Rev

A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks 5L5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Span 2:

Average ULS = (55.2 + 53.2)/2 = 54.2 kN

= 29380 cm4, L = 30165mm, a' = 1.0

cr= rc2EI/(a'L)2 = rc2x205000x29380X104/(1.0x30165)2 = 653kN

(l-P(Jis cr) = (1 - 54.2/653) = (1 - 0.083) = 0.917

2.2.2 Second order magnification factors

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

K = H - 1 D.2.5

Sh2 h3

3EleffR

+

3E1

Sub Frame 1 (Elastic)

Sh2 = 30165x(10000)2 = 0.01820
3EIeffR 3 X 205000 X 26944 X i04

h3
= ioOoo = 0.00516

3EIeff 3X205000X31503xio

K = 1
=42.8N/mmSubl 0.01820 + 0.00516

Sub Frame 2 (Elastic)

Sh2 = 30165 x(10000)2 = 0.01821
3EJeffR 3x205000x26942x i04

h3______ = __________________ = 0.00516
3EIeff c 3X205000x31505x l0

K h2 = 1
= 42.8 N/mm

U

0.01821 + 0.00516

180

The  Steel 
Construction 
Institute 

Job No: CDS139 

Subject Second-order  Worked  Example: 

Job  Title BS 5950 Portal 

Rev A Page 8 of 41 

Fax: (01 344)  622944 

CALCULATION SHEET Checked  by 

Cllent DETR Made  by CMK 

WIS 

Silwood Park, Ascot, Berks SL5 70N 
Telephone: (01 344)  623345 

Two-span  Portal with Hit/Miss Internal Columns. 
I 

Span 2: 

Average PuLs = (55.2 + 53.2)/2 = 54.2 kN 

I ,  = 29380  cm4, L = 30165mm, a = 1.0 

P,, = z2EI/(aL)* = .r~~X205000~29380X10~/(1.0X30165)~ = 653 kN 

(I-P(,l-s /P,.,) = (1 - 54.2/653) = (1 - 0.083)  0.917 

2.2.2 Second order magnification  factors 

The  notional sway deflection is calculated  from the sum of the stiffnesses K for 
each of the column  and  rafter  pairs: 

Sway  stiffness  from  column  and  rafter  stiffness 

Sub Frame l (Elastic) 

Sh 30 165 x ( 10000)2 
~- = 0.01820 
3Ereff.R 3 x 205000 x 26944 x lo4 

- -  h 3  - 100003 
= 0.00516 

3EIeff,c  3 X 205000 X 3  1503 X lo4 

1 
0.01820 + 0.00516 KSubl  = = 42.8 N/mm 

Sub Frame 2 (Elastic) 

Sh2 30165X(10000)2 - -  = 0.01821 
3Eleff.R 3 x 205000 x 26942 x lo4 

h 3  - 10000~ 
~- = 0.00516 
3 EIeff,c 3 X 205000 X 3  1505 X lo4 

1 
0.01821 + 0.00516 K m 2  = = 42.8  N/mm 

)ate May 2001 

)ate July 2001 

D.2.5 
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Job No: CDS139 ka 9 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 JON
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Nominal Base fixity D.4

KH= 1
b

—

— 5/3 ______+

3EI

External Column

K = 1 = 23.95 N/mmbext
(0.0366 + 0.00516)

Total Frame Stiffness

= K sub I + Kb ext + K sub 2 + Kb mt + Kb ext

= 42.8 + 23.95 + 42.8 +23.95 = 133.5 N/mm

Second -order notional sway deflection A.2.5

H 1.274x1000ô =—= =9.55mmii2
EK2 133.5

Critical Buckling Ratio

A = h = 10000 =5.2cr1
200ô112 200 x9.55

Sway mode magnification

ACr! = 1.24
A -1cr1

2.2.3 Deflection calculations

Sway Deflections A.3.4

The first-order sway deflection oX15 is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of Acr).
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Institute 

Job No: CDS139 

Subject Second-order  Worked  Example: 

Job Title BS 5950 Portal 

Rev A Page 9 of 41 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01  344)  623345 

Two-span Portal with Hit/Miss Internal Columns. 
Fax: (01344)  622944 

Client DETR Made by CMK C 

CALCULATION SHEET I Checked by WIS 

Nominal  Base  fixity 

External  Column 

1 
(0.0366 + 0.00516) 

- 
Kb ext - 

= 23.95 N/mm 

Total  Frame Stiffness 

Second  -order notional sway deflection 

H -  1.274~1000 = 9.55 mm q,2 = - - 
=K2 133.5 

Critical  Buckling  Ratio 

h -  10000 
4 1  - - - 

- 

2oo 412 

= 5.2 
200 x 9.55 

Sway mode magnification 

[h] = 1.24 

2.2.3 Deflection calculations 

Sway Deflections 

The  first-order  sway deflection a,, is calculated from the sum  of  the 
stiffnesses K for each of the column  and rafter pairs.  (The base stiffness of 
nominally  pinned bases is not included because this is not a stability 
calculation like the calculation of A,,). 

)ate May 2001 

)ate July 2001 

D.4 

A.2.5 

A.3.4 
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Job No: CDS139 Page 10 of 41 A

Job Tale BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 ]QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Chent DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

K=1= 1

o

(

S/i2 h3 ' D.2.3

Sub Frame 1 (Elastic)

Sh2 - 30165x(10000)2_________________ = 0.01669
3EIR 3 x 205000 X29380 x i04

____ i00003____ - ____________________ = 0.00488
3EI 3 x 205000 x 33320 x i04

1
KsUbl

=
0.01669 + 0.00488

= 46.4 N/mm

Sub Frame 2 (Elastic)

As Sub frame 1

1
KSUb2

=
0.01669 + 0.00488

= 46.4 N/mm

Total Frame Stiffness

= K sub i + K sub 2

= 46.4 + 46.4 = 92.7 N/mm

First-order sway deflection

A H 0.960x1.275x 1000oX = —i-— = _____________ - 13 20 mmiS K2 92.7
-

I A 1 = 1.09
IA —iicr2 J

oX2
=

(OX1 -OX ) x kr2
] + x I Acri

1

A.3.4
iS IA —1 S

cr2 [A — iicr1 j

I A
1oY2 = oy

[22

1 82
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Institute 

Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01  344)  623345 
Fax: (01344)  622944 

CALCULATION SHEET 

Sub Frame 1 (Elastic) 

Sh2 - 30 165 X ( 10000)2 
3ElR 3 x 205000 x 29380 x lo4 
- -  

- -  h 3  - 10000~ 
3 El, 3 x 205000 x 33320 x IO4 

Job No: CDS139 

Job  Title BS 5950 Portal 

Page 10 of 41 Rev A 

Subject Second-order Worked Example: 
~~~~ ~~~ 

Two-span Portal with Hit/Miss Internal Columns. 

Cllent DETR lhnade by CMK 

Checked by WIS 

= 0.01669 

= 0.00488 

1 
0.01669 + 0.00488 KSubl = = 46.4 N/mm 

Sub Frame 2 (Elastic) 

As Sub  frame 1 

1 
0.01669 + 0.00488 KSub2 = = 46.4  N/mm 

Total Frame Stiffness 

= K sub I + K sub 2 

EK = 46.4 + 46.4 = 92.7 N/mm 

First-order sway deflection 

- 0.960 X 1.275 X 1000 = 13.20 mm 
92.7 

[&] = 1.09 

)ate May  2001 

)ate July 2001 

D.2.3 

A.3.4 
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Institute

Job No: CDS139
fPa9e

11 of 41
fRey

A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 ]QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Values of oX1 and OY1 are taken from first order analysis (See Sheet 7).

0xB (-35.7 - 13.19) x 1.09 + 13.19 x 1.24 = -37.0 mm
ôyB

= 0.6 x 1.09 = 0.7mm

= (-11.3 - 13.19) x 1.09 + 13.19 x 1.24 = -10.4mm
236.7 xl.09 = 258.1 mm

ÔXD = (13.1 - 13.19) x 1.09 + 13.19 x 1.24 = 16.2 mm
= 3.4 x 1.09 = 3.7 mm

OxF = (38.3 - 13.19) x 1.09 + 13.19 x 1.24 = 41.6mm
0yF = 225.4 X 1.09 = 245.8 mm

5xG = (59.6 - 13.19) X 1.09 + 13.19 x 1.24 = 66.9mm
0yG = 0.6 x 1.09 = 0.7mm

Interpolation of deflections at hinge 'c'

x 2977Across span ratio a' = — = ______ = 0.099
S 30165

Ratio of hinge deflection to maximum deflection

= 3.2(a' - 2a' + a') = 0.312 E.1

yti

= 41.6 mm = 245.8 mm

ÔXD
= 16.2 mm ÔYD = 3.7 mm

=
0XD (OXF

-
°XD)

= 19.5 mm E.2

=
ôYD

+ _a' (o - OYD) = 79.1 mm
E.1
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The  Steel 
Construction Job  Title BS 5950 Portal 
Institute S.---- IJobNo: CDS139 lPage 11 of 41 IRev A 1 Subject Second-order  Worked  Example: 

Fax: (01 344)  622944 Client DETR Made  by 

CALCULATION SHEET Checked  by 

Values of m < ,  and 6 y ,  are taken from  first  order analysis (See Sheet 7). 

S,, = (-35.7 - 13.19) X 1.09 + 13.19 X 1.24 
S,, = 0.6 X 1.09 = 0.7 mm 

S,, = (-11.3 - 13.19) X 1.09 + 13.19 X 1.24 
S,, = 236.7 X 1.09 = 258.1 mm 

S,, = (13.1 - 13.19) X 1.09 + 13.19 X 1.24 
S,, = 3.4 X 1.09 = 3.7 mm 

S,, = (38.3 - 13.19) X 1.09 + 13.19 X 1.24 
S,, = 225.4 X 1.09 = 245.8  mm 

S,, (59.6 - 13.19) X 1.09 + 13.19 X 1.24 
SYG = 0.6 X 1.09 = 0.7 mm 

Interpolation of deflections  at  hinge ‘c’ 

x 2977 
S 30165 

Across  span  ratio a = - = - = 0.099 

Ratio  of  hinge deflection to maximum deflection 

E! = 3.2(a4 - 2 d  + a) = 0.312 
Y P  

S,, = 41.6 mm SYF = 245.8 mm 

S,, = 16.2  mm SyD = 3.7 mm 

aL dxxc = S,, + - (SxF - SxD) = 19.5 mm 
PL 

SYc = Sy, + - Y a  (SyF - SyD) = 79.1 mm 
Y P  

= -37.0  mm 

= -10.4 mm 

= 16.2 mm 

= 41.6  mm 

= 66.9 mm 

)ate May 2001 

)ate July 2001 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 

Two-span Portal with Hit/Mks Internal Columns. 
I 

- 

E. 1 

E.2 

E. 1 
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A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks 5L5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

2.3 Bending deflections of the plastic frame

2.3.1 Stiffness reduction factors to allow for P.o effects A.4.2

Columns: as the "elastic" frame

LH Column: (1 - P cr) 0.945

Rafters: as the "elastic" frame because that used a = 1.0

Span 1: (1P/Pcr) = 0.917

Span2: (1P/Pcr) = 0.917

2.3.2 Second Order Magnification Factor

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of
the rafter and column pairs between plastic hinges and the base stiffness of
each column.

Sway stiffness from column and rafter stiffness.

K= 1

-
Sh2 ht

3E1.
+

3E1
D.3.5

etf,R eff,c

'cff.R = 1"e (1P/Pcr) = 26944 cm4 A.4.2

'eff.c = I (1 -PIP) = 31503 cm4

Sub Frame 1 (Plastic)

S/i2 = 30165x(10000)2 = 0.01820
3EIeffR 3 X205000 X 26944X i04

ht i00003______ = ___________________ = 0.00516
3EIeffc 3x205000x31503x i04

K 1 = 42.8 N/mmsub 1 0.01820 + 0.00516
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Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 

I CALCULATION SHEET Checked by WIS 

2.3  Bending deflections of the plastic frame 

2.3.1 Stiffness reduction factors to allow for P.5 effects 

Columns:  as the “elastic”  frame 

LH Column: ( 1  - P /Pcr) = 0.945 

Rafters: as the “elastic”  frame  because that used a = 1 .O 

Span 1: (1-P I P c r )  = 0.917 

Span  2: (1-P /Pcr) = 0.917 

2.3.2 Second Order Magnification Factor 

Sway mode magnification factor 

The notional sway deflection is calculated from the sum of  the stiffnesses K of 
the rafter  and  column  pairs  between plastic hinges and  the base stiffness of 
each  column. 

Sway stiffness from  column and rafter stiffness. 

I eff.R = (l-P/Pcr) = 26944 cm4 

Ieff.c = 1, (1 - P/Pcr) = 31503 cm4 

Sub Frame 1 (Plastic) 

Sh2 30165X(10000)2 - -  = 0.01820 
3Eleff,R  3 X 205000 X 26944 X lo4 

~- h 3  - 10000~ 
= 0.00516 

3EIeff,,  3 X 205000 X 3 1503 X lo4 

1 
0.01820 + 0.00516 Ksub 1 = = 42.8  N/mm 

l a te  July  2001 

A.4.2 

D.3.5 

A.4.2 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5 7QN
Telephone: 1013441 623345
Fax: (01344) 622944

CALCULATION SHEET

Two-span Portal with Hit/Miss Internal Columns.

Client DETR by CMK Date May 2001

ked by WIS Date July 2001

Nominal Base fixity D.4

K- 1

5Iz h3

3EIff

External Column

K = 1 = 23.95 N/mmbext
(0.0366 + 0.00516)

Total Frame Stiffness

2JK2 K sub I + Kb ext + Kb ext

= 42.8 + 23.95 + 23.95 = 90.7 N/mm

Second-order notional sway deflection for the plastic frame

H 1.274x1000ô =—= =14.05mm" 90.7

Critical Buckling Ratio D.3.5

A = h
=

10000 =3.56
Cfl5

200ô 200 x 14.05

Magnification Factor

crp = 1.391
A -1

crp

2.3.3 Deflections of the "plastic" frame from gravity loads

Loads

The loads applied to the "plastic" frame = (A,,
— A1)(loads at ULS)

(A,, - A1) = (1.12 - 0.96) = 0.16

Slope of rafters a = er =a = 6°, giving Cos a = 0.9945

Assuming both service load and imposed load are specified "on plan",
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Job No: CDS139 

Subject Second-order  Worked  Example: 

Job Title BS 5950  Portal 

Rev A Page 13 of 41 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344)  623345 

Two-span  Portal with Hit/Miss  Internal  Columns. 
Fax: (013441  622944 Client DETR Made by 

CALCULATION SHEET I Checked  by WIS 

Nominal  Base fnity 

External  Column 

1 
(0.0366 + 0.00516) Kb ext = = 23.95  N/mm 

Total  Frame Stiffness 

= K sub I + Kb ext + Kb ext 

EK2 = 42.8 + 23.95 + 23.95 = 90.7  N/mm 

Second-order notional sway deflection for the plastic  frame 

Critical Buckling  Ratio 

Magnification Factor 

[&l = 1.391 

2.3.3 Deflections of the  "plastic"  frame  from  gravity loads 

Loads 

The  loads  applied to the "plastic"  frame = (Ap - A,)(loads at ULS) 

(Ap - A,) = (1.12 - 0.96) = 0.16 

Slope of rafters a, = 4 =a = 6", giving  Cos a = 0.9945 

Assuming  both  service load and  imposed load are  specified "on plan", 

)ate May 2001 

)ate July 2001 

D.4 

D.3.5 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks 5L5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK Date May 2001

Checked by WIS Date July 2001

at ULS, W plan = 1.26 + 5.76 = 7.02 kN/m

giving a transverse load on the "plastic frame"

= (A -
A1)(Wv.pian at ULS)Cos2

= 0.16X7.02(0.9945)2 = 1.11 kN/m

Assuming both dead load and self-weight are values "along the slope",

at ULS, = 0.84 + 1.12 = 1.96 kN/m

giving a transverse load on the "plastic frame"

= — at ULS)Cosii

0.16x1.96x0.9945 = 0.31 kN/m

Summing loads from components "on plan" and "along the slope",

w = 1.11 + 0.31 = 1.42 kN/m

Sway A.4.5

This arises due to the rotation of the colunm without an adjacent hinge.

w S3
First-order end slope of the rafter as a simply supported beam, °R

EIR

wS3 A
Second-order end slope of the rafter, °R2 =

24 EIR

E = 205000 N/mm2

= 29380 cm4

8R2 =
1.42 x 30165 x 1.391 = 0.03472 radians

24 x 205000 x 29380 x i04

Horizontal deflection of Point B, C, D =

= 10000 x 0.03472

= 347.2 mm
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Job Title BS 5950 Portal 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 7QN Two-span Portal with Hit/Miss Internal Columns. 
Telephone: (01 344)  623345 
Fax:  (013441  622944 Client DETR Made by CMK Date May  2001 

CALCULATION SHEET I Checked by WIS 

at ULS, = 1.26 + 5.76 = 7.02  kN/m 

giving a transverse load on the “plastic frame” 

= (Ap - A I ) ( ~ , , p l a n  at ULS)Cos2 a 

= 0.16X7.02(0.9945)2 = 1.11  kN/m 

Assuming  both  dead load and self-weight are values “along the slope”, 

at ULS, w , , , ~ ~ ~ ~  = 0.84 + 1.12 = 1.96  kN/m 

giving a transverse load on the “plastic frame” 

= (Ap  - /ZI ) (~ , , , ,ope  at ULS)Cosa 

= 0 . 1 6 ~ 1 . 9 6 ~ 0 . 9 9 4 5  = 0.31  kN/m 

Summing loads from  components “on  plan”  and  “along the slope”, 

W, = 1.11 + 0.31 = 1.42  kN/m 

Sway 

This  arises  due to the rotation of  the column without an adjacent hinge. 

wp s3 
First-order  end slope of the rafter as  a  simply supported beam, OR =. ~ 24 EIR 

wp s3 
Second-order  end slope of the rafter, eR2 - 

E = 205000  N/mm2 

I ,  = 29380  cm4 

1.42 x 301653 
‘R2 = X 1.391 = 0.03472 radians 

24 X 205000 X 29380 X lo4 

Horizontal deflection of Point B, C, D = he, 

= 10000 X 0.03472 

= 347.2 mm 

)ate July 2001 

A.4.5 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: 101344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:

o - wS4 Acrpb2 EIR 'crp1

o = x 1.42 x 30165 x 1.391 = 354.3 mmb2 384 205000 x 29380 x iO

ôB2 354.3
0apex = °apex

= _____ =
0.9945

= 356.2 mm

Span 2: as Span 1

Hinge Drop From interpolation

OY = ô = 0.312 x 356.2 = 111.0mm
Apex

Spread

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:

Full span 0spread = OB2 (Sinr1 + Sina'2) = OB2 (2Sin 60)

= 354.3 (2 x 0.1045) = 74.1 mm

Half span 5spread
=

OB2 Sin a = 354.3 x 0.1045 = 37.0 mm

Span 2: as Span 1
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Job Title BS 5950  Portal 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01 344) 623345 

Two-span Portal with Hit/Miss  Internal  Columns. 
Fax: (01344) 622944 

Client DETR Made  by CMK 
CALCULATION SHEET Checked  by WIS 

Mid-span drop 

Deflection  given by value  for  simply  supported beam of span  equal  to the 
developed  length of the rafters. 

span 1: 

5 x  1.42 X 301654 
205000 X 29380 X lo4 fib2 = 384 X 1.391 := 354.3 mm 

Span 2: as  Span  1 

Hinge Drop From  interpolation 

' SY = - SAApex = 0.312 x 356.2 = 111.0 mm Y a  
Y P  

Spread 

This  is  caused by  the drop of  the angle in  the rafter which is  at the apex in this 
frame. Because this  frame is a  symmetrical  pitched  roof  portal, the drop of 
the angle is  the mid-span  drop  calculated  above. 

span 1: 

Full  span Sspread = S,, (Sina, + Sina,) = $, (2Sin 6") 

= 354.3  (2 x 0.1045) = 74.1 mm 

Half span Sspread = S,, Sin a, = 354.3 X 0.1045 = 37.0 mm 

Span 2: as  Span 1 

)ate May 2001 

)ate July  2001 
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Job No: CDS139 Pae 16 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

70N Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

Spread at hinge from Interpolation

oX =
0SprcadSpanl

+ Opjspfl2
= 74.1 + (0.3 12 X 74.1) = 97.1 mm

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, O = 0.03472 radians (Sheet 14)

Off-set of the hinge below the rafter, e = 10000 - 9400 = 600 mm

Horizontal deflection of Point M = e@R

= 600 x 0.03472

= 20.8 mm

2.3.4 Deflections of the "plastic" frame from horizontal loads

Loads

The unfactored loads applied to the "elastic frame" included the horizontal
loads and were in proportion to the ULS loads, so the loads applied to the
"plastic" frame (A — A)(loads at ULS)

(4- A) = (1.12 - 0.96) = 0.16

Slope of rafters a' = a'2 =a' = 6°, giving Cos a' = 0.9945

Sway

Total of column forces = 254.9 kN (Sheet 7)

0.5% x of total of column forces — 0.005 x254.9 = 1.27 kN (Sheet 5)

Additional horizontal load on plastic frame

H = 0.16 x 1.27 = 0.204 kN = 204 N
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Job Title BS 5950 Portal 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 70N Two-span Portal with Hit/Miss Internal Columns. 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 Client DETR Made by CMK I 

CALCULATION SHEET I Checked  by &‘Is 

Spread at  hinge  from  Interpolation 

Yd’  m = ’SpreadSpanl y p  ‘SSpreadSpanZ = 74.1 + (0.312 X 74.1) = 97.1 mm + -  

Column hinge horizontal  displacement 

The hinge occurs at the underside of the haunch,  which is at  a distance from 
the neutral axis of  the rafter, causing an additional horizontal displacement. 

Second-order  end slope of the rafter, Om = 0.03472 radians 

Off-set of  the hinge below the rafter, e = 10000 - 9400 = 600 mm 

Horizontal deflection of Point M = eoR 

= 600 X 0.03472 

= 20.8 mm 

2.3.4 Deflections of the  ”plastic”  frame  from  horizontal loads 

Loads 

The unfactored loads applied to the “elastic  frame” included the horizontal 
loads  and  were in proportion to  the ULS loads, so the loads applied to the 
“plastic” frame = (A, - A,)(loads at ULS) 

(Ap - A,) = (1.12 - 0.96) = 0.16 

Slope of rafters a, = a2 = a = 6” ,  giving Cos a = 0.9945 

Sway 

Total of column forces = 254.9 kN 

0.5% X of total of column  forces = 0.005 ~ 2 5 4 . 9  = 1.27. kN 

Additional horizontal load on plastic frame 

H = 0.16 x 1.27 = 0.204 kN = 204 N 

)ate May 2001 

la te  July 2001 

(Sheet 14) 

(Sheet 7) 

(Sheet 5 )  
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For a multi-span frame, the sway deflection is calculated from the sum of the
stiffnesses K for each of the spans:

= 45.8 N/mm

1

'"crp

2 -1
crp

= 1 =45.8
0.0167 + 0.0052

Second-order least sway deflection of the column top

H 0.204x 1000= = __________ x 1.391 = 6.2 mm2
EK5 45.8

Mid-span drop

Second order sagging deflection of a straight rafter:
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Job No: CDS 139 IPage 17 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK Date May 2001

Checked by WIS Date July 2001

1
KSUb 1 = ______________________

(Sh2
( 3El 3El)

Total Frame Stiffness

K5= K sub I

A.4.6

A.4.6
ML2 2

= r crp where M = H h1sm2
16EIR 1

H1 is the proportion of the horizontal force carried by each sub frame calculated
as a proportion of the stiffness K2.

Sub frame 1:

Drop in the apex of rafter span I due to horizontal load.

o = 0.204 x 1000 x 10000 (30165)2 x 1.391 = 2.7sm2
16 x 205000 x 29380x io
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Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01344)  622944 

Job No: CDS139 

Subject Second-order  Worked  Example: 

Job Title BS 5950 Portal 

Rev A Page 17 of 41 

Two-span  Portal with Hit/Miss  Internal  Columns. 

Client DETR Date May  2001 Made  by CMK 
CALCULATION SHEET Checked by WIS 

For  a  multi-span  frame, the sway deflection is calculated  from the sum of the 
stiffnesses K for  each of the spans: 

1 

1 1 
K s u b  1 = 

- 
~ = 45.8 

S h 2  0.0167 + 0.0052 [-+g) 
Total Frame Stiffness 

x =  K S " b I  

M S  = 45.8 N/mm 

Second-order least  sway deflection of the  column top 

Mid-span drop 

Second  order  sagging  deflection of a  straight  rafter: 

Hi is the proportion of  the horizontal  force  carried by each  sub  frame  calculated 
as  a proportion of the stiffness K*. 

Sub frame 1: 

Drop in the apex  of  rafter  span 1 due  to  horizontal  load. 

:. ssmz = 
0.204 x 1000 x 10000 (30165)2 x = 2.7 

16 X 205000 X 29380X lo4 

)ate July 2001 

A.4.6 

A.4.6 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Si)wood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

70N Two-span Portal with Hit/Miss Internal Columns.

Client DETR IM by CMK

Checked by WIS

Date May

Date July

2001

2001

Spread

Span 1:

Full span spread = ô (Sina' + Sina,) = 2.7 (Sin 6° + Sin 6°)

= 2.7 (0.1045 + 0.1045) = 0.6mm

Half span spread = ô,,,2 (Sina1) = 2.7 (Sin 6°)

= 2.7 (0. 1045) = 0.3 mm

2.4 Axial forces for the energy calculation A.5

The total of the axial loads in the columns is not affected by second-order
effects because of vertical equilibrium, so P2 = P1 which is taken as the
mid-height value calculated in 2.2 above.

Span 1:

LH col: take mid-height P1 = (132.0 + 122.4)/2 = 127.2 kN

Span 2:

RH col: take mid-height P = (132.5 + 122.9)/2 = 127.7 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.

Span 1:

Total Mid-span drop = 617.0 mm

Increase in P2 = {1/[1(ôa i'ha)]l}
= {1/[1—(617.0 /11577)] — 1}

= 0.056

LH rafter: take mid-length P1 = (60.0 + 46.2)/2 = 53.1 kN

Mid-span axial = 46.2, giving P/i increase = 0.056x46.2 = 2.6 kN

P2 = 53.1 + 2.6 = 55.7 kN

1 90
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I ISubJect Second-order  Worked  Example: 
Silwood Park, Ascot,  Berks SL5 7QN 
Telephone: (01 344)  623345 
Fax: (01 344)  622944 t I 

Client DETR IMade by CMK I[ 1 CALCULATION SHEET I Checked by WIS 

Spread 

span 1: 

Full span spread = S,, (Sina, + SinaJ = 2.7 (Sin 6" + Sin 6") 

= 2.7 (0.1045 + 0.1045) = 0.6 mm 

Half  span  spread = Ssmz (Sina,) = 2.7 (Sin 6") 

= 2.7  (0.1045) = 0.3 mm 

The total of  the axial loads in the columns is not affected by second-order 
effects  because of vertical equilibrium, so P2 = P, which is taken as the 
mid-height value calculated in 2.2 above. 

I span 1: 

LH col: take mid-height P, = (132.0 + 122.4)/2 = 127.2 kN 

span 2: 

RH col: take mid-height P, = (132.5 + 122.9)/2 = 127.7 kN 

The  rafter axial forces are affected by the drop of the rafters at mid-span. 

span 1: 

Total  Mid-span  drop = 617.0 mm 

Increase  in P2 = {l / [ l - (d .  /h3]-1} = {1/[1-(617.0 /11577)] - l} 

= 0.056 

LH rafter: take mid-length P, = (60.0 + 46.2)/2 = 53.1 kN 

Mid-span axial = 46.2, giving PA increase = 0.056X46.2 = 2.6 kN 

P2 = 53.1 + 2.6 = 55.7 kN 

l a te  May 2001 

l a te  July 2001 

A.5 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: 101344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR IM by CMK Date May 2001

by WIS Date July 2001

RH rafter: take mid-length P1 = (62.1 + 48.4)/2 = 55.3 kN

Mid-span axial = 48.4, giving P/i increase 0.056 x 48.4 2.7 kN

P2 = 55.3 + 2.7 = 58.0 kN

Span 2:

Total Mid-span drop = 602.0 mm

Increase in P2 = {1/[1(ôa /ha)]1} = {1/[1—(602.0 /11577)] 1} = 0.055

LH rafter: take mid-length P1 = (62.1 + 48.3)/2 = 55.2 kN

Mid-span axial = 48.3, giving P/i increase = 0.055x48.3 = 2.6 kN

P2 = 55.2 + 2.6 = 57.8 kN

RH rafter: take mid-length P1 = (60.1 + 46.3)12 = 53.2 kN

Mid-span axial = 46.3, giving Pu increase = 0.055x46.3 = 2.5 kN

P2 = 53.2 + 2.5 = 55.7 kN

2.5 Second-order Energy Summation A.6

The energy summation is required to calculate AM following the methods in
A.2.2
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Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344) 623345 
Fax: (01 344) 622944 

CALCULATION SHEET Checked by 

Two-span  Portal  with  Hit/Miss  Internal  Columns. 

Made  by 

RH rafter:  take  mid-length P ,  = (62.1 + 48.4)/2 = 55.3 kN 

Mid-span  axial = 48.4, giving P A  increase = 0 . 0 5 6 ~ 4 8 . 4  = 2.7 kN 

P2 = 55.3 + 2.7 = 58.0 kN 

span 2: 

Total  Mid-span  drop = 602.0 mm 

Increase in Pr = {l/[l-(da /ha)]-l} = {1/[1-(602.0 /11577)] - l }  = 0.055 

LH rafter:  take  mid-length P, = (62.1 + 48.3)/2 = 55.2 kN 

Mid-span axial = 48.3, giving PA increase = 0 . 0 5 5 ~ 4 8 . 3  = 2.6 kN 

P2 = 55.2 + 2.6 = 57.8 kN 

RH rafter:  take  mid-length P,  = (60.1 + 46.3)/2 = 53.2 kN 

Mid-span  axial = 46.3, giving P A  increase = 0 . 0 5 5 ~ 4 6 . 3  = 2.5 kN 

P2 = 53.2 + 2.5 = 55.7 kN 

2.5 Second-order Energy Summation 

The  energy  summation  is  required  to  calculate AM following the methods in 
A.2.2 

)ate May 2001 

)ate July 2001 

A. 6 
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Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Date

May

Checked by WIS Date July

2001

2001

Element for evaluation of Pc*phi*s*d(phi)

X-AXIS DEFLECTIONS
Deflections from the "elastic frame
dxa
dxb
(dxb - dxa)
Deflections from the "plastic" frame
From gravity loads
Sway of top of elastic column
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb
(dxb - dxa)
Column hinge horizontal displacement
dxa
dxb
(dxb - dxa)
From horizontal loads
Sway
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb
(dxb - dxal

AXIAL FORCES
Pc for columns and rafters at ULS
Total midspan drop
Midspan height
Increase rafter mispan axial by {1/(1-drop/height) - 1)
Midspan axial
Increase in rafter axial
Desian axial

0.0 -37.0 -10.4
-37.0 -104 16.2
-37.0 26.6 26.6

0 0 347.2 347.2
347.2 347.2 347.2
347.2 0.0 0.0

0.0 0.0 37.0
0.0 37.0 74.1
0.0 37.0 37.0

0.0 0.0 0.0
0.0 0.0 00
0.0 0.0 0.0

00 6.2 6.2
6.2 6.2 6.2
6.2 0.0 0.0

127.2 53.1 55.3
617.0 617.0
11577 11577
0.056 0 056
46.2 484

2.6 27
127.2 55.7 58.0

16.2 19.5 66.9 0.0
19.5 66.9 66.9 66.9
3.3 474 0.0 66.9

3472 347.2 347.2 0.0
347.2 3472 3472 347.2

0.0 0.0 0.0 347.2

74.1 97.1 148.1 0.0
97.1 148.1 148.1 1481
23.1 51.0 00 148.1

0.0 0.0 208 0.0
0.0 0.0 0.0 208
0.0 0.0 -20.8 20.8

6.2 6.2 6.2 0.0
6.2 6.2 62 6.2
0.0 0.0 0.0 6.2

552 532 127.7 127.7
602 0 602.0

11577 11577
0.055 0.055
483 463

2.6 2.5
578 557 1277 127.7

0.9 0.2 92.61 Sum 195

AB BC CD ED Dc cG dG Hd

E=D

0.0 0.0 0.3 06 0.6 0.6 0.0
0.0 0.3 0.6 0.6 0.6 0.6 0.6
0.0 0.3 03 0.0 0.0 0.0 0.6

ITotaI of (dxb - dxa) at collapse 316.4 63.9 63.9 26.4 98.4 -20.8 589.81

Y.AXIS DEFLECTIONS
Deflections from the "elastic" frame
dya 0.0 0.7 258 1 37 79.1 0.7 0.0

dyb 07 258.1 3.7 79.1 0.7 0.7 07
(dyb - dya) 0.7 257.5 -254.4 75.4 -78.5 0.0 0.7
Deflections from the "plastic" frame
Mid-span drop from gravity loads
dya 0.0 0 0 3562 0.0 111 0 0.0 0.0

dyb 0.0 356.2 0.0 111.0 0.0 0.0 00
(dyb - dya) 0.0 356.2 -356.2 111.0 -111.0 0.0 0.0
Deflections from the "plastic" frame
Mid-span drop from horizontal loads
dya 0.0 0.0 2.7 0.0 0.0 00 0.0

dyb 00 2.7 0.0 0.0 0.0 0.0 0.0

(dyb - dya) 0.0 2.7 -2.7 0.0 0.0 0.0 0.0
Total of (dyb - dya) at collapse 0.7 616.4 -613.3 186.4 -189.5 0.0 0.71

psi (angle from X axis) 90.0 6.0 -6.0 6.0 -6.0 90.0 90.0
[(dxb - dxa) at collapse]Sin(psi) 316.4 6.7 -6.7 2.8 -10.3 -208 589.8
[(dyb- dya) at collapse]*Cos(psi) 0.0 613.0 -609.9 185.4 -188.4 00 0.0
phi * sat collapse 316.4 619.7 -6166 188 1 -198.7 -20.8 589.8
Incremental rotn = d(phi) from mechanism

IShortening phi*s*d(phi) (modulus)
1.000
316.4

1,000
619.7

0567
349.4

0.567
106.6

0077
15.3

0.077
1.6

1 229

724.91

llncremental energy = Pc*phi*s*d(phi) 40.2 34.5 20.3 6.2 .

WORK DONE ON ROTATING HINGES
Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd

MprA 00 0.0 404.0 0.0 404.0 454.0 00
MprB 00 404.0 404.0 404.0 0.0 0.0 454.0
MprA + MprB 0.0 404.0 808 0 404 0 404 0 454 0 454 0
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.567 0.567 0.077 0.077 1.229

IMpr*d(phi) 0.0 404.0 457.9
.

Factor on lambda_p 0 886
lambda_p from first-order analysis 1.120
lambda_M 0.993

228.9 31.0 34.9 558.01 Sum = 1715
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Element for evaluation  of Pc*phi's'd(phi) AB  BC CD ED  DC cG  dG  Hd 

X-AXIS DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dxa 
dxb 
(dxb - dxa) 
Deflections  from  the  "plastic" frame 
From gravity loads 
Sway of  top  of elastic column 
dxa 
dx b 
(dxb - dxa) 
Spread 
dxa 
dxb 
(dxb - dxa) 
Column  hinge  horizontal  displacement 
dxa 
dxb 
(dxb - dxa) 

Sway 
From  horizontal  loads 

dxa 
dx b 
(dxb - dxa) 
Spread 
dxa 
dxb 

E=D 

-37.0 -104 16.2 
0.0 -37.0 -10.4 

-37.0 26.6 26.6 

16.2 19.5 66.9 0.0 
19.5 66.9 66  9 66.9 
3.3 47.4 0.0 66.9 

0 0 347.2 347.2 
347.2 347.2 347  2 

347  2 347.2  347.2 0.0 
347.2 3472  3472 347.2 

347.2 0.0  0.0  0.0 0.0 0.0 347.2 

0.0 37.0 74.1 
0.0 0.0 37.0 

0.0 37.0 37.0 

0.0 0.0 0 0 
0.0 0.0 0.0 

0.0 0.0 0.0 

0 0  6.2 6.2 
6  2 6.2 6.2 
6.2 0.0 0.0 

0.0 0.0 0.3 
0.0 0.3 0.6 

74.1  97 1 148.1 
97.1  148.1 148.1  148  1 

0.0 

23.1  51.0 0.0 148.1 

0.0 0.0 20  8 0.0 

0.0 0.0 -20.8  20.8 
0.0 0.0  0.0 20  8 

6.2  6.2 6.2 0.0 
6.2 
0.0 0.0 0.0 6.2 

6.2 6  2  6.2 

0 6  0.6 0.6 0.0 
0.6 0.6 0.6 0.6 

(dxb- dxa) 0.0 0.3  0.3 0.0 0.0 0.0 0.6 
ITotal  of  (dxb - dxa)  at  collapse 316.4 63.9 63.9 26.4  98.4 -20.8 589.81 

Y-AXIS DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dya 
dyb 

- dya) 

Mid-span  drop  from gravity loads 
Deflections  from  the "plastic"  frame 

dya 
dyb 
(dyb - dya) 
Deflections  from  the  "plastic" frame 
Mid-span  drop  from  horizontal  loads 
dya 
dyb 

0.0 0.7 

0.7  257.5 
0 7  258.1 

0.0 0 0 
0.0 356.2 
0.0 356.2 

0.0  0.0 
0 0 2.7 

258  1 
3.7 

-254.4 

356  2 

-356.2 
0.0 

2.7 
0.0 

3  7  79.1 
79.1  0.7  0.7 

0.7 0.0 
0 7  

75.4  -78.5 0.0 0.7 

0.0 111 0 0.0 0.0 
111.0 0.0 0.0 0 0  
111.0 -111.0 0.0 0.0 

0.0 0.0 0 0 0.0 
0.0 0.0 0.0 0.0 

(dyb - dya) 0.0 2.7 -2.7 0.0 0.0 0.0 0.0 
ITotal  of  (dyb - dya)  at  collapse 0.7  616.4 -613.3 186.4 -189.5 0.0 0.7' 

PSI (angle  from X axis) 
[(dxb - dxa) at wllapse]'Sin(ps~) 
[(dyb - dya) at collapse]'Cos(psi) 
phi * S at collapse 

90 0 6.0 -6 0 
316.4 6  7 -6.7 

6.0 -6.0 90 0 90 0 
2.8 -10 3 -208 589.8 

0 0  613.0  -609.9 1854 -188.4 0 0  0 0  
316.4 619.7 -6166 188  1 -198.7 -20.8 589.8 

Incremental  rotn = d(phi)  from  mechantsm 1.000 1.000 0 567 0.567 0 077 0.077 1 229 
IShortening = phi's*d(phi)  (modulus) 316.4 619.7 349.4 106.6 15.3 1.6 724.91 

AXIAL FORCES 
Pc  for  columns  and  rafters at ULS 127.2 53.1 55.3 552  532 127.7 1277 
Total  midspan  drop 
Mldspan height  11577  11577 

617.0 617.0 
11577  11577 
602 0 602.0 

Increase  rafter  mlspan  axial by {ll(l-dropiheight) - l} 0.056 0 056  0.055 0.055 
Midspan  axlal 46.2 48  4 48 3 46  3 
Increase  in  rafter  axial 2.6 2  7  2  6 2.5 
Design  axlal 127.2 55 7 58.0 578 557  1277 127.7 

llncremental  energy = Pc'phi"s*d(phi) 40.2  34.5 20.3  6.2 0.9 0.2  92.61 Sum = 
WORK DONE  ON  ROTATING HINGES 
Element  for  evaluating Mprd(ph1)  AB  Ba  ab  bD DC cG  dG Hd 
M prA 0 0 0.0 404.0 
MprB 

0.0 404 0 454.0 0 0 

MprA + MprB 
0 0  404.0 404.0 
0.0 404.0 808 0 404 0 404 0 454 0 454 0 

404.0 0.0 0.0 454 0 

IMpr*d(phi) 
Incremental  rotn = d(phi)  from  mechanism 1.000  1.000  0.567  0.567 0077  0077  1229 

0.0 404.0  457.9  228.9  31.0  34.9 558.01 Sum = 

195 

1715 

Factor  on lambda-p 

lambda-M I 0.993 
1  120 lambda p from  first-order  analysis 
0 886 
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2.6 Load factor at failure, AM A.6

'2 qsdq = 195 q

Mprd5 = 1715Q5

(P2 q5 s d5)
A /2 = 1-M P

(Mprdb)

'M / =
[i

- ( i)j 0.886

0.886 x A 0.886 x 1.120 = 0.993

The above shows how the second-order effects have caused a major reduction
in capacity of the frame due to in-plane instability effects. The "hand" method
tends to be conservative, so analysis by another method might demonstrate that
the reduction in capacity is not so great.

The analysis above would be less conservative if the stiffness of the haunches
had been included in all the stiffness calculations. It would also be more
economical if the frame were proportioned so that 2 were closer to
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2.6 Load factor at failure, 

X Mpr d@ = 1715 @ 

/2M / A, - - [l - ( 195 ")J = 0.886 
1715 @ 

A M  = 0.886 X A., = 0.886 X 1.120 = 0.993 

The  above  shows how the second-order  effects have caused  a  major  reduction 
in capacity of the frame due to in-plane  instability  effects.  The  "hand" method 
tends  to be conservative, so analysis by another  method  might  demonstrate  that 
the reduction in capacity  is not so great. 

The  analysis  above would be less  conservative if the stiffness of the haunches 
had  been  included  in all the stiffness  calculations.  It would also be more 
economical if the frame were proportioned so that A, were closer to JP. 

)ate May 2001 

l a te  July 2001 

A.6 
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HIT FRAME

As geometry of the hit frame is similar to the two-span portal in the previous
worked example some of the checks are not explicitly shown in this example.

1 .3 Hinge Incremental Rotations

The values of incremental rotation of the hinges are taken from the first-order
collapse mechanism. These are the incremental rotations as used to calculate
the collapse factor of the frame using the classic Rigid-Plastic (Virtual Work)
method.

The second-order analysis uses the relative magnitude of the instantaneous
rotations, so the absolute magnitude of each rotation does not affect the
calculations.

Where the analysis has been performed by methods other than the Rigid-Plastic
method (e.g. by the Semi-Graphical method), the incremental rotations can be
deduced from the geometry of the frame and the position of the hinges. It is
not necessary to repeat the calculation of the collapse factor by the
Rigid-Plastic method.

Failure Mechanism for Hit Frame

/
Ii
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HIT FRAME 

As geometry of the hit frame is similar to the  two-span  portal  in  the previous 
worked  example  some of  the checks are not explicitly shown in this example. 

1.3 Hinge  Incremental  Rotations 

The values of incremental rotation of  the hinges are taken from the first-order 
collapse  mechanism.  These are the incremental rotations as used  to calculate 
the collapse  factor of the frame using the classic Rigid-Plastic (Virtual Work) 
method. 

The second-order analysis uses the relative magnitude of  the instantaneous 
rotations, so the absolute magnitude of each rotation does not affect the 
calculations. 

Where the analysis  has been performed by methods other than  the Rigid-Plastic 
method (e.g. by the Semi-Graphical method), the incremental rotations can  be 
deduced  from the geometry of  the frame and the position of  the hinges. It is 
not  necessary  to  repeat the calculation of  the collapse factor by the 
Rigid-Plastic method. 

Failure Mechanism for Hit Frame 

/ \ 
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Find Node Locations

Pt A -. (0.0, 0.0) = (0.0, 0.0)

Pt B -. (0.0, 10.0) = (0.0, 10.0)

Pt C - (15.0, {10.0 + 15.OTan6}) = (15.0, 11.577)

Pt D -' (30.0, 10.0) = (30.0, 10.0)

Pt E - (30.0, 0.0) = (30.0, 0.0)

Pt F -. (30.0+15.0}, {10.0 + 15.OTan6}) = (45.0, 11.577)

Pt G -, (60.0, 10.0) = (60.0, 10.0)

Pt H -. (60.0, 0.0) = (60.0, 0.0)

Pt a -' (10.9llCos6, {10.0 + 10.9llSin6}) = (10.851, 11.141)

Pt b -, ({30.0—2.993Cos6}, {10.0 + 2.993Sin6}) (27.023, 10.3 13)

Pt c -' ({60.0—13.551Cos6}, {10.0 + 13.551Sin6})= (46.523, 11.416)

Pt d -. (60.0, 9.400) = (60.0, 9.400)

Find Centre of Rotation I

X —X 300-00y = E A = =23.759mIi ( - (0.974) - (-0.289)
dY Aa dY Eb

= XA + [() x = 0.0 + (0.97397 23.760) = 23.142m

Pt I -' (23.142, 23.759)
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Find  Node  Locations 

Pt A - (0.0, 0.0) = (0.0, 0.0) 

Pt B - (0.0, 10.0) = (0.0, 10.0) 

Pt C - (15.0,  (10.0 + 15.OTan6)) = (15.0, 11.577) 

Pt D - (30.0,  10.0) = (30.0, 10.0) 

Pt E - (30.0, 0.0) = (30.0, 0.0) 

Pt F - ({30.0+15.0}, (10.0 + 15.OTm6)) = (45.0,  11.577) 

Pt G - (60.0,  10.0) = (60.0,  10.0) 

Pt H - (60.0, 0.0) = (60.0, 0.0) 

Pt a - (10.911Cos6,  (10.0 + 10.911Sin6)) = (10.851,  11.141) 

Pt b - ((30.0-2.993Cos6},  (10.0 + 2.993Sin6)) = (27.023,  10.313) 

Pt c - ({60.0-13.551Cos6},  (10.0 + 13.551Sin6))=  (46.523,  11.416) 

Pt d - (60.0,  9.400) = (60.0, 9.400) 

Find  Centre of Rotation I 

XI1 = X, + [ (S) Aa x ql] = 0.0 + (0.97397 x 23.760) = 23.142m 

Pt I - (23.142,  23.759) 

l a te  May 2001 

l a te  July 2001 
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Find Centre of Rotation 12

XH XE = 60.0 - 30.0 = 20.728 m
- (dx' (1.447) - (0.0)

dY)EC dY)Hd

X12 = XE + {()
Ec

= 30.0 + (1.447 x 20.728) = 60.0 m

Note that X12 = 60.0 is obvious without calculation!

Pt I - (20.728, 60.0)

Hinge Rotations

Taking the instantaneous rotation about A as 8

o = a x ______ = 8 x 11.141 = 0.8838I' - 23.759 — 11.141

- 23759-10313o = 8 x b = 0.8838 x ____________ = 1.1518
E 11 10.313

_____ 111418 =8 X =1,1518x
12 E - 20.728 - 11.141

= 1.151 Ox 1.162 = 1.411 8

O = e x 2 -
17d = 14118

20.728 - 9.400
H 9.400

=1.411 Ox 1.205 = 1.7018

1 .4 Axial forces at ULS from first-order analysis

Span 1:

LH column: at base = 131.7 kN, at haunch = 122.0 kN

LH rafter: at column = 59.1 kN, at apex = 45.4 kN

1 96
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Find  Centre of Rotation I 

= 30.0 + (1.447 x 20.728) = 60.0 m 

Note that X,, = 60.0 is  obvious  without  calculation! 

Pt I - (20.728, 60.0) 

Hinge Rotations 

Taking the instantaneous  rotation  about A as 8 

4, = e x  K 11.141 
YIl - ya  23.759 - 11.141 

= e x  = 0.8838 

YI, - Yb 
BE = e,, x = 0.883 8 X 23.759 - 10.313 = 

Ytl 10.313 

= 1.1518 x 11.141 e12 = 6 ,  X 
4, - yc 20.728 - 11.141 

= 1.151 8 x 1.162 = 1.411 8 

y12 - Yd 
BH = q2 x = 1.4118 X 

20.728 - 9.400 
'd 9.400 

=1.411 8 X 1.205 = 1.701 6 

1.4 Axial forces at ULS from first-order  analysis 

Span 1: 

LH column:  at base = 131.7 kN, at haunch = 122.0 kN 

LH rafter:  at  column = 59.1 kN, at apex = 45.4 kN 
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RH rafter:

RH column:

Span 2:

LH rafter: at column =

RH rafter: at column =

RH column: at base =

Notional Horizontal Forces

Span 1:

External Column

0.5% x Axial Force in Column = 0.005 X 126.9 0.635

Internal Column

0.5% x Axial Force in Column = 0.005 x 588.6 2.943

Span 2

External Column

0.5% x Axial Force in Column = 0.005 x 128.3 0.642
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at column

at base

61.3 kN,

593.3 kN,

at apex

at haunch

= 47.6 kN

= 583.9 kN

62.0 kN,

60.1 kN,

133.1 kN,

at apex

at apex

at haunch

= 48.2 kN

= 46.4 kN

= 123.5 kN

1.5

1 .5 Reduced Plastic Moments at ULS from first-order analysis

Use the reduced moment capacity for the sections to account for the co-existent
axial force, calculated in accordance with BS5950-1 :2000, Annex 1.2. These
may be taken from section tables.

Mrx = Jy Srx � 1.2 p Z1

For the axial forces in this frame under this load case

Cl 4.2.5
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RH rafter:  at  column = 6  1.3 kN, at apex = 47.6 kN 

RH column:  at base = 593.3  kN, at haunch = 583.9 kN 

span 2: 

LH rafter:  at  column = 

RH rafter:  at  column = 

RH column:  at base 

Notional  Horizontal  Forces 

Span 1: 

External  Column 

- - 

62.0  kN,  at apex = 48.2 kN 

60.1 kN, at  apex = 46.4 kN 

133.1 k N ,  at haunch = 123.5 kN 

0.5% X Axial Force in Column = 0.005 X 126.9 

Internal  Column 

0.5% X Axial Force in Column = 0.005 X 588.6 

Span 2 

External  Column 

0.5% X Axial Force in Column = 0.005 X 128.3 

= 0.635 

= 2.943 

= 0.642 

--t -+ 
0.7 kN 0.7  kN 1.5 kN 1.5 kN 

Tk m m 

1.5 Reduced  Plastic Moments  at ULS from first-order  analysis 

Use the reduced  moment  capacity  for the sections  to  account  for the co-existent 
ixial  force,  calculated in accordance  with  BS5950-1:2000, Annex 1.2. These 
nay be taken  from  section  tables. 

;or the axial  forces in this  frame  under  this  load  case 

late May 2001 
~ 

)ate July 2001 
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Client DETR Made  by CMK -- 
c -- 

- 
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Mpr rafters = 404 kNrn

external columns = 454 kNm

1.6 Load factor at formation of the first hinge, Ai

= 0.945 (From the frame analysis output)

1.7 Plastic collapse factor, A.?

= 1. 117 (From the frame analysis)

1 .8 Member inertias, I

External columns: 457x 191 x 74 UB: l = 33320 cm4

Rafters: 457x 191 x 67 UB: 4 = 29380 cm4

Internal column: 254 x254 x 73 UC: 4 = 11410 cm4

1 .9 Deflections of frame at A1 (formation of the first hinge)

= —28.9 mm =0.6 mm

= 4.8 mm =233.5 mm

ôxD = 19.0 mm ÔyD 2.9 mm

ÔXF = 41.7 mm ÔYF =223.1 mm

ÔxG = 64.7mm
ôyG =0.6mm
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MPr rafters = 404 kNm 

Mpc external  columns = 454  kNm 

1.6 Load factor at formation of the first  hinge, h, 

1, = 0.945  (From the frame analysis output) 

1.7 Plastic  collapse factor, h, 

AP = 1.117  (From the frame analysis) 

1.8 Member inertias, I, 

External  columns: 457x 191 X 74 UB: I ,  = 33320 cm4 

Rafters: 457x 191 X 67 UB: I ,  = 29380 cm4 

Internal column:  254 x254 x 73  UC: I ,  = 11410 cm4 

1.9 Deflections of frame at A, (formation of the first hinge) 

S,, = -28.9  mm *,B =0.6 mm 

S,, = 4.8  mm S,, =233.5  mm 

S,, = 19.0  mm SyD 2.9  mm 

S,, = 41.7  mm $F =223.1 mm 

S,, = 64.7  mm SYG =0.6  mm 

la te  May 2001 

la te  July 2001 
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SECOND-ORDER ANALYSIS

Axial forces in members

the average axial forces in the members, from first order analysis

2.

2.1

Use

Span 1

LII col:

LII rafter:

RH rafter:

RH col:

Span 2

LH rafter:

RH rafter:

RH col:

= 126.9 kN

= 52.3kN

=54.5 kN

= 588.6 kN

= 55.1 kN

= 53.3kN

= 128.3 kN

take mid-height ULS = (131.7 + 122.0)12

take mid-length ULS = (59.1 + 45.4)/2

take mid-length ULS = (61.3 + 47.6)/2

take mid-height ULs = (583.9 +593.3)12

take mid-length ULS = (62.0 + 48.2)/2

take mid-length uLS = (60.1 + 46.4)/2

take mid-height uLs = (133.1 + 123.5)/2

Bending deflections of the "elastic" frame

Stiffness reduction factors allowing for P.O effects A.3.2

2.2

2.2.1

Columns

Sum of columns uLS, uLS = 126.9 + 588.6 + 128.3 = 843.8 kN

External columns: I = 33320 cm4, h = 10000mm, a' = 1.7

cr = 2333 kN

Internal column:

Pcr = 799 kN

Sum of columns Cr,

(1 - ULS /EPcr) = 0.846

1/(1 — 1LS /P) = 1.18

= 11410 cm4, h = 10000mm, a' = 1.7

Cr = 2333 + 799 + 2333 5464 kN
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2. SECOND-ORDER  ANALYSIS 

2.1 Axial  forces in members 

Use the average axial forces in the members,  from  first  order analysis 

span l 

LH col: take mid-height PuLs = (131.7 + 122.0)/2 = 126.9 kN 

LH  rafter: take mid-length PuLs = (59.1 + 45.4)/2 = 52.3 kN 

RH rafter: take mid-length PuLs = (61.3 + 47.6)/2  =54.5 kN 

RH col: take mid-height PuLs = (583.9  +593.3)/2 = 588.6 kN 

span 2 

LH rafter: take mid-length PuLs = (62.0 + 48.2)/2 = 55.1 kN 

RH rafter: take mid-length PuLs = (60.1 + 46.4)/2 = 53.3 kN 

RH  col: take mid-height P,,, = (133.1 + 123.5)/2 = 128.3 kN 

2.2 Bending deflections of the  "elastic"  frame 

2.2.1 Stiffness  reduction  factors  allowing for P.5 effects 

Columns 

Sum of columns PLILs, W U L s  = 126.9 + 588.6 + 128.3 = 843.8 kN 

External columns: Z, = 33320 cm4, h = 10000mm, a = 1.7 

P,, = 2333 kN 

Internal column: I, = 11410 cm4,  h = 10000mm, a = 1.7 

P,, = 799 kN 

Sum of columns Pcr, EP cr = 2333 + 799 + 2333 = 5464 kN 

l 

( I  - ZPuLs /2Pc,) = 0.846 

1/(1 - ~ P L I L s  /ZPc,) = 1.18 

l a t e  July 2001 

A.3.2 
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Rafters

Span 1:

Average uLs = (52.3 + 54.5)12 = 53.4 kN

= 29380 cm4, L = 30165mm, a' = 1.0

cr = rc2EI/(a'L)2 653 kN

(1-PJLs cr) = 0.918

Span 2:

Average tJLS = (55.1 + 53.3)12 = 54.2 kN

= 29380 cm4, L = 30165mm, a' = 1.0

Pcr rt2EIl(aL)2 = 653 kN

(l-PULs "1') = 0.917

2.2.2 Second order magnification factors A.3.3

The notional sway deflection is calculated from the sum of the stiffnesses K for
each of the column and rafter pairs:

Sway stiffness from column and rafter stiffness

K='= 1

ô S/i2 D.2.5

3EICffR 3EI1

Sub Frame 1 (Elastic)

Sh2 = 30165 x(10000)2 = 0.01818
3EJeffR 3x205000x26981 x i04

h3 = IOOOO3 = 0.00516
3EIeff c 3x205000x31508x i04

K b = 1 = 42.8 N/mm
U 1 0.01818 + 0.00516
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Rafters 

span 1: 

Average P,,Ls = (52.3 + 54.5)/2 = 53.4 kN 

I, = 29380  cm4, L = 30165mm, a = 1.0 

P,, = T C ~ E I / ( ~ L ) ’  = 653 kN 

(l-PuL, /Pcr)  = 0.918 

Span 2: 

Average P,,,, = (55.1 + 53.3)/2 = 54.2 kN 

I, = 29380  cm4, L = 30165mm, a = 1.0 

P,, = X*EI/(~L)* = 653 kN 

(l-PLILs /Pcr) 0.917 

2.2.2 Second order magnification  factors 

The notional sway deflection is calculated from the sum of the stiffnesses K for 
each of the  column  and rafter pairs: 

Sway  stiffness  from  column  and rafter stiffness 

Sub Frame 1 (Elastic) 

Sh2 - 30 165 x ( 1 OOOO)* - -  = 0.01818 
3EIeff,R  3 X 205000 X 2698 1 X lo4 

~- h 3  - 10000~ = 0.00516 
3E1eff,c  3X205000X31508X104 

1 
0.01818 + 0.00516 K S u b l  = = 42.8  N/mm 

)ate May  2001 

)ate July 2001 

Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01  344)  623345 

Two-span Portal with Hit/Miss Internal Columns. 
Fax: (01344)  622944 

Client DETR 

c 

C Made  by CMK -- 
-- 

- 

A.3.3 

D.2.5 
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Sub Frame 2 (Elastic)

Sh2 30165 x(10000)2______ ___________________ = 0.01818
3EIffR 3x205000x26981 x i04

h3 - i00003______ ___________________ = 0.00516
3EIff 3x205000x31508x i04

1

KsUb
= __________________ = 42.8 N/mm- 0.01818 + 0.00516

Nominal Base fixity D.4

b
Ô ( s3 h3

K H I

I + __
3EI

External Column

1___________ = 24.0 N/mmKb
=

(0.0366 + 0.00516)

Total Frame Stiffness

EK = K sub + Kb ext + K sub 2 + Kb + Kbext

Y2K = 42.8 + 24.0 + 42.8 +24.0 = 133.6 N/mm

H 4.219x1000
on2 =

2K2
=

133.6
= 31.6 mm

'cr1
h - 10000= ______ — _________ =- 1.6

2000fl2 200x31.6

Sway mode magnification

2 1 = 2.7
1A1

201

I CALCULATION SHEET I Checked by W IS 

Sub Frame 2 (Elastic) 

Sh2 - 30165X(10000)2 - -  = 0.01818 
3E1eff.R  3 X 205000 X 2698 1 X lo4 

- -  h 3  - 10000~ = 0.00516 
3E1eff.c  3X205000X31508X  lo4 

1 
0.01818 + 0.00516 KSub2 = = 42.8  Nlmm 

Nominal  Base  fixity 

1 External  Column 

1 
(0.0366 + 0.00516) Kb ext = = 24.0 N/mm 

1 Total  Frame Stiffness 

' K  = K sub I + Kb ext + K sub 2 +  Kb int + Kb ext 

2X = 42.8 + 24.0 + 42.8 +24.0 = 133.6 N/'mm 

dn* = - - H ._ 4*219 x 'Oo0 = 31.6 mm 
133.6 

/lcr* = - - h -  loooo = 1.6 
200 d"* 200 x 3  1.6 

1 Sway mode magnification 

[h] = 2.7 

)ate July 2001 
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2.2.3 Deflection calculations

Sway deflections A.3.4

The first order sway deflection ÔX is calculated from the sum of the
stiffnesses K for each of the column and rafter pairs. (The base stiffness of
nominally pinned bases is not included because this is not a stability
calculation like the calculation of 'icr)

KH 1-
Ô

-
Sh2 h3 D.3.3

Sub Frame 1 (Elastic)

S/i2 = 30165 x(10000)2 = 0.01669
3EIR 3x205000x29380x io

____ ioooo____ = ____________________ = 0.00488
3EI 3 x205000x33320x iO

K = 1 =46.4N/mmSubi 0.01669 + 0.00488

Sub Frame 2 (Elastic)

As Sub frame 1

K = 1 = 46.4 N/mmSub2 0.01669 + 0.00488

Total Frame Stiffness

EK = KSUbI + KSUb2

= 46.4 + 46.4 = 92.7 N/mm

First-order sway deflection

21H 0.950x4.219x1000 D.3.3
oX =— = =43.23mm

2K2 92.7
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CALCULATION SHEET Checked by WIS 

2.2.3 Deflection calculations 

Sway  deflections 

The  first  order sway deflection &X,, is calculated from the sum of the 
stiffnesses K for  each of  the column and rafter pairs. (The base stiffness of 
nominally pinned bases is not included because this is not a stability 
calculation like the calculation of A,,). 

Sub Frame 1 (Elastic) 

Sh2 - 30 165 x ( 10000)2 
3EIR  3 x 205000 x 29380 x lo4 
- -  = 0.01669 

- -  h 3  - 10000~ = 0.00488 
3 E 4  3 x205000 x 33320 x lo4 

1 
0.01669 + 0.00488 KSubl = = 46.4  N/mm 

Sub Frame 2 (Elastic) 

As Sub  frame 1 

1 
0.01669 + 0.00488 KSub2 = 46.4  N/mm 

Total Frame Stiffness 

= K sub l + K sub 2 

EK = 46.4 + 46.4 = 92.7  N/mm 

First-order sway  deflection 

AIH - 0.950X4.219X 1000 = 43.23 mm 
92.7 

l a t e  May 2001 

l a t e  July 2001 

A.3.4 

D.3.3 

D.3.3 
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A A A.3.4
= (OX ) ><

cr2 + OX X
cr1 -

2 1 Is
2cr2 — 1

Is
'cr1 —

oy2 = x Acr

cr2

Values of OX1 and ÔY1 are taken from first order analysis (See Sheet 7).

0xB = (-28.9 - 43.23) x 1.183 + 43.23 x 2.7 = 32.1 mm
0yB

= 0.6 x 1.183 = 0.7mm

0xC = (4.8 - 43.23) x 1.183 + 43.23 X 2.7 = 71.9 mm
0yC

= 233.5 xl.183 = 276.1 mm

OXD = (19.0 - 43.23) x 1.183 + 43.23 x 2.7 = 88.7 mm
= 2.9 x 1.183 3.4mm

OxF = (41.7 - 43.23) x 1.183 + 43.23 x 2.7 = 115.6 mm
OyF

= 223.1 x 1.183 = 263.8mm

0xG = (64.7 - 43.23) x 1.183 + 43.23 x 2.7 = 142.8 mm
0yG = 0.6 x 1.183 0.7mm

2.3 Bending deflections of the "plastic" frame A.4

2.3.1 Stiffness reduction factors to allow for P.o effects A.4.2

Columns: as the "elastic" frame

LII Column: (1 - ULS IPr) = 0.946

Central Column: (1 - ULS 'cr) = 0.263

Rafters: as the "elastic" frame because that used a = 1.0

Span 1: (l-PJLs /Pcr) = 0.917

Span 2: ('-PULS IPcr) = 0.917
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SY, = SYl x [ ic:: l ]  

Values of &X, and 8, are taken from  first order analysis (See Sheet  7). 

S,, = (-28.9 - 43.23) X 1.183 + 43.23 X 2.7 = 32.1 mm 
dyyB = 0.6 x 1.183 = 0.7 mm 

S,, = (4.8 - 43.23) x 1.183 + 43.23 X 2.7 = 71.9 mm 
SYc = 233.5 X 1.183 = 276.1 mm 

S,, = (19.0 - 43.23) X 1.183 + 43.23 X 2.7 = 88.7 mm 
S,, = 2.9 X 1.183 = 3.4 mm 

S,, = (41.7 - 43.23) X 1.183 + 43.23 X 2.7 = 115.6  mm 
S,, = 223.1 X 1.183 = 263.8  mm 

S,, = (64.7 - 43.23) x 1.183 + 43.23 x 2.7 = 142.8  mm 
S,, = 0.6 X 1.183 = 0.7 mm 

2.3 Bending deflections of the  “plastic“  frame 

2.3.1 Stiffness  reduction  factors to allow for P.5 effects 

Columns: as the “elastic”  frame 

LH Column : (1 - PuLs /Pcr)  = 0.946 

Central  Column:  (1 - PuLs /Pcr) = 0.263 

Rafters: as the “elastic”  frame  because that used a = 1.0 

Span 1: (1 - P U L S  lPCJ = 0.917 

)ate May  2001 

)ate July 2001 

A.3.4 

A. 4 

A.4.2 

Span 2: ( 1 - /Per> = 0.917 
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2.3.2 Second Order Magnification Factor A.4.3

Sway mode magnification factor

The notional sway deflection is calculated from the sum of the stiffnesses K of

the rafter and column pairs between plastic hinges and the base stiffness of
each column.

Sway stiffness from column and rafter stiffness.

K= 1

2
Sh2 h3 D.3.5

3EIeffR
+

Sub Frame 1 (Plastic)

Sh2 = 30165 x(10000)2 = 0.01818
3EJCffR 3x205000x26981 x i04

h3 = 10000 = 0.00516
3EIeff c 3x205000x31508x i04

K 1 = 42.84 N/mmsub I 0.01818 0.00516

Sub Frame 2 (Plastic)

Sit2 = 30165x(10000)2 = 0.01818
3EIffR 3x205000x26981 xlO

h3 = i00003 = 0.05416
c 3x205000x3003x i04

K = 1 = 13.82 N/mmsub2 0.01818 + 0.05416

Nominal Base fixity D.4

K =-= 1

b
h3+

3EIff
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2.3.2 Second Order Magnification  Factor 

Sway  mode magnification factor 

The notional sway deflection is calculated from the sum of  the stiffnesses K of 
the rafter and  column  pairs  between plastic hinges and the  base stiffness of 
each  column. 

Sway stiffness from column  and rafter stiffness. 

1 K2 = 

Sub Frame 1 (Plastic) 

Sh2 - 30 165 X ( 1 0000)2 - -  = 0.01818 
3Ezeff,R 3 x 205000 x 2698 1 x lo4 

- -  h 3  - 10000~ = 0.00516 
3 E1,,,,, 3 x 205000 x 3 1508 x lo4 

1 
0.01818 + 0.00516 Ksub 1 = = 42.84  N/mm 

Sub Frame 2 (Plastic) 

Sh2 - 30165 ~ (10000)~  - -  = 0.01818 
3E1cff.R 3 X 205000 X 2698 1 X lo4 

~- h 3  - 10000~ = 0.05416 
3Eleff,c 3 X 205000 X 3003 X lo4 

1 
0.01818 + 0.05416 Ksub 2 = = 13.82  N/mm 

Nominal  Base fixity 

~ 

)ate May  2001 
~ 

)ate July 2001 

A.4.3 

D.3.5 

D.4 
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External Column

K = 1 = 23.95 N/mmbext
(0.0366 + 0.00516)

Internal Column

K. = 1 =6.2N/mmbint
(0.1069 + 0.0542)

Total Frame Stiffness

= K sub 1 + K b mt + K sub 2 + Kb , + Kb ext

= 42.84 + 23.95 + 13.82 +6.2 + 23.95 = 110.8 N/mm

Second-order notional sway deflection for the plastic frame

H 4.219x 1000ô =—= =39.8mm''
EK2 110.8

Critical Buckling Ratio D.3.5

A = Ii = 10000 = 1.31
2OOô 200x39.8

Magnification Factor A.4.3

CTV = 4.20
krp1

2.3.3 Deflections of the "plastic" frame from gravity loads A.4.5

Loads

The loads applied to the "plastic" frame = (A,,
— A,)(loads at ULS)

-
A1) (1.117 - 0.95) = 0.167

Slope of rafters a = a2 =a' = 6°, giving Cos a' 0.9945

Assuming both service load and imposed load are specified "on plan",

at ULS, Wypian 1.26 + 5.76 = 7.02 kN/m

205
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External  Column 

1 
(0.0366 + 0.00516) K b  ext = = 23.95  N/mm 

Internal  Column 

1 
(0.1069 + 0.0542) K b  int = = 6.2 N/mm 

Total  Frame Stiffness 

zK = K sub 1 + K b int + K sub 2’ Kb in[ + K b  ext 

EK = 42.84 + 23.95 + 13.82 +6.2 + 23.95 = 110.8  N/mm 

Second-order notional sway deflection for the  plastic  frame 

H - 4 . 2 1 9 ~  1000 = 39.8 mill dn, = - - 
= K 2  110.8 

Critical Buckling  Ratio 

h -  10000 
= - 200 x 39.8 

= 1.31 

Magnification Factor 

[&l = 4.20 

2.3.3 Deflections of the  ”plastic”  frame  from  gravity loads 

Loads 

The  loads  applied  to the “plastic”  frame = (Ap - A,)(loads at ULS) 

(Ap - AI) = (1.117 - 0.95) = 0.167 

Slope of rafters al = 4 =a = 6” ,  giving Cos a .= 0.9945 

Assuming  both  service load and  imposed  load  are  specified “on  plan”, 

at ULS, w , , ~ , ~ , ,  = 1.26 + 5.76 = 7.02 kN/m 

)ate May 2001 

late July 2001 

D.3.5 

A.4.3 

A.4.5 

205 



The Steel
Construction
Institute

Job No: CDS139 Page 34 of 41 A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

7QN Two-span Portal with Hit/Miss Internal Columns.

Client DETR

Made

by CMK

Checked by WIS

Date May

Date July

2001

2001

giving a transverse load on the "plastic frame"

=
(Ap

—
2l)(''v.p1an at ULS)Cos2a

= 0.171X7.02(0.9945)2 = 1.16 kN/m

Assuming both dead load and self-weight are values "along the slope",

at ULS, w,10= 0.84 + 1.12 = 1.96 kNfm

giving a transverse load on the "plastic frame"

= (A - A1)(w0 at ULS)Cos a

= 0.171x1.96x0.9945 = 0.33 kN/m

Summing loads from components "on plan" and "along the slope",

wp = 1.16 + 0.33 = 1.49 kN/m

Sway A.4.5

This arises due to the rotation of the column without an adjacent hinge.

w S3
First-order end slope of the rafter as a simply supported beam, 0R =

24EIR

wS3 A
Second-order end slope of the rafter, 0R2 =

24k'EIR

E = 205000 N/mm2

I,, = 29380 cm4

8 = 1.49 x 30165 x 4.20 = 0.11834 radiansR2 24 x 205000 x 29380 x i04

Horizontal deflection of Point B, C, D = hOR

= 10000 x 0.11834

= 1183.4 mm
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giving a transverse load on the “plastic frame” 

= (A, - AI)(~,,p,an at ULS)Cos2a 

= 0.171  X7.02(0.9945)* = 1.16 kN/m 

Assuming both dead load and self-weight are values “along the slope”, 

at ULS, w,~,lope = 0.84 + 1.12 = 1.96 kN/m 

giving a transverse load on the “plastic frame” 

= (A, - AI)(w,,,lope at ULS)Cos a 

= 0.171 X 1.96X0.9945 = 0.33 kN/m 

Summing loads from  components  “on  plan”  and  “along the slope”, 

wp = 1.16 + 0.33 = 1.49 kN/m 

Sway 

This  arises  due to the rotation of  the column without an adjacent hinge. 

w p  s3 
First-order  end slope of the rafter as a  simply supported beam, OR = ~ 

24 EIR 

wp s3 L p  Second-order  end slope of the rafter, eR2 = - 
24 EIR [ Acrp - l ]  

E = 205000 N/mm2 

I ,  = 29380 cm4 

1.49 x 301653 

24 X 205000 X 29380 X lo4 ‘R2 = X 4.20 = 0.1 1834 radians 

Horizontal deflection of Point B, C, D = he,  

= 10000 x 0.11834 

= 1183.4 mm 

)ate May 2001 

)ate July 2001 

A.4.5 
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Mid-span drop

Deflection given by value for simply supported beam of span equal to the
developed length of the rafters.

Span 1:

o = S w S4 '1crp
b2 384 EIR Xcrp -1

o = _— x 1.47 x 30165 x 4.20 = 1115.5 mmb2 384 205000 x 29380 x i04

_____ 1115.5o = ____ = _____ = 1l21.7mm
apex 0.9945

Span 2: as Span 1

Spread A.4.5

This is caused by the drop of the angle in the rafter which is at the apex in this
frame. Because this frame is a symmetrical pitched roof portal, the drop of
the angle is the mid-span drop calculated above.

Span 1:

Full span pread = OB2 (Sin a + Sin 2) = 0B2 (2Sin 6°)

= 1115.5 (2 x 0.1045) = 233.2mm

Half span 0prcad = 0B2 Sina = 1115.5 x 0.1045 = 116.6 mm

Span 2: as Span 1

Column hinge horizontal displacement

The hinge occurs at the underside of the haunch, which is at a distance from
the neutral axis of the rafter, causing an additional horizontal displacement.

Second-order end slope of the rafter, 8R' = 0.11834 radians (Sheet 34)

Off-set of the hinge below the rafter, e = 10000 - 9400 = 600 mm

Horizontal deflection of Point M = et9R = 600 x 0.11834 71.0mm
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Mid-span drop 

Deflection  given by value  for simply supported  beam of span  equal  to the 
developed  length of the rafters. 

span 1: 

5 W P  s4 
*b2 = 384 EI, [kc> l ]  

z J 
X 

1.47 x 301654 
'b2 = 384 X 4.20 = 1115.5 mm 

205000 X 29380 X lo4 

dB2 - daapex = - - - - - 1121.7 mm 
cos a 0.9945 

Span 2: as Span  1 

Spread 

This  is  caused by the  drop of the angle in  the rafter  which  is at the apex in this 
frame.  Because  this  frame  is  a  symmetrical pitched roof portal, the drop of 
the angle is the mid-span  drop  calculated  above. 

span 1: 

Full span = $, (Sinal + Sin a2) = $, (2Sin 6") 

= 1115.5 (2 X 0.1045) = 233.2 mm 

Half span dsspread = Sin al = 1 1 15.5 X 0.1045 = 1  16.6 mm 

Span 2: as  Span  1 

Column hinge  horizontal displacement 

The hinge  occurs  at the underside of the haunch, which is  at  a  distance from 
the neutral  axis of  the rafter,  causing an additional  horizontal  displacement. 

Second-order  end  slope of the rafter, BR2 = 0.11834  radians 

3ff-set  of  the  hinge  below the rafter, e = 10000 - 9400 = 600 mm 

Horizontal deflection of Point M = eoR = 600 x 0.11834 = 7 1 .O mm 

l a te  May 2001 

l a te  July 2001 
~~ 

A.4.5 

(Sheet 34) 
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2.3.4 Deflections of the "plastic" frame from horizontal loads

Loads

The unfactored loads applied to the "elastic frame" included the horizontal
loads and were in proportion to the ULS loads, so the loads applied to the
"plastic" frame = (4 — 2)(loads at ULS)

(4 2) = (1.117 - 0.950) = 0.167

Slope of rafters a' = a'2 =a' = 6°, giving Cos a' = 0.9945

Sway

Total of column forces = 843.8 kN (Sheet 27)

0.5% x of total of column forces (elastic frame) = 0.005 x843.75 4.22 kN

Additional horizontal load on plastic frame

H = 0.167 x 4.22 x 1000 = 705N

For a multi-span frame, the sway deflection is calculated from the sum of the

stiffnesses K for each of the spans:

=

S h h3
2crp

A.4.6

3EIR 3EI krp
-

KSUbI = 44.5

K sub2 = 29.8

Total Frame Stiffness (First Order)

= KSUbI + K sub2

= 44.5 + 29.8 = 74.3 N/mm

Second-order least sway deflection of the column top

H 0.705x1000= = x 4.20 = 39.8 mm
74.3

208

The  Steel 
Construction 
Institute 

Job Title BS 5950 Portal 

Job No: CDS 139 Rev A Page 36 of 41 

Subject Second-order  Worked  Example: 
Silwood Park, Ascot, Berks SL5 7QN 
Telephone: (01 344) 623345 

Two-span Portal with Hit/Miss Internal Columns. 
Fax: (01344) 622944 

Client DETR C Made  by CMK 
CALCULATION SHEET I Checked by WIS 

2.3.4 Deflections of the "plastic" frame from horizontal loads 

Loads 

The unfactored loads applied to the "elastic frame" included the horizontal 
loads and  were in proportion to  the ULS loads, so the loads applied to the 
"plastic" frame = (A, - A,)(loads at ULS) 

(A, - A,) 1 (1.117 - 0.950) = 0.167 

Slope of rafters a, = a2 =a = 6", giving Cos a = 0.9945 

Sway 

Total of column forces = 843.8 kN 

0.5% X of total of column forces (elastic frame) = 0.005 x843.75 = 4.22 kN 

Additional horizontal load on plastic frame 

H = 0.167 x 4.22 X 1000 = 705N 

For  a multi-span frame, the sway deflection is calculated from the sum of  the 
stiffnesses K for each of the spans: 

1 1 
S h 2   h 3  
3EIR  3EIc 

j x  
Acrp - 

KSub , = 44.5 

K = 29.8 

Total  Frame Stiffness (First  Order) 

' K ~  = K sub I + K sub 2 

' K s  = 44.5 + 29.8 = 74.3 N/mm 

Second-order least  sway deflection of the  column top 

)ate May 2001 

)ate July 2001 

(Sheet 27) 

A.4.6 
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Mid-span drop

Second order sagging deflection of a straight rafter:

ML2 A
= r rp where M = H. h.sm. 16E1 A -1 II

R crp

I] is the proportion of the horizontal force carried by each sub frame
calculated as a proportion of the stiffness K2.

Sub frame 1:

Drop in the apex of rafter span 1 due to horizontal load.

= 0.425 x 1000 X 10000 (30165)2 x 4.20 = 16.8 mmsrn2 16 x 205000 x 26951 x i04

Sub frame 2:

Drop in the apex of rafter span 2 due to horizontal load.

o = 0.280 x 1000 x 10000 (30165)2 x 4,20 = 11.1mmsm. 16 >< 205000 x 26951 x i04

Spread

Span 1:

Full span spread = O2 (Sin tz + Sin 2) = 16.8 (Sin 6° + Sin 6°)

= 16.8 (0.1045 + 0.1045) = 3.5mm

Half span spread = 0sm2 (Sina'1) = 16.8 (Sin 6°)

= 16.8 (0. 1045) = 1.8 mm

Span 2:

Full span spread = Osfl2 (Sin a1 + Sin a2) = 11.1 (Sin 6° + Sin 6°)

= 11.1 (0.1045 + 0. 1045) = 1.2mm

Half-span spread = Om2 (Sin a1) = 11.1 (Sin 6°)

= 11.1 (0. 1045) = 2.3mm
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Mid-span drop 

Second order  sagging  deflection of a  straight  rafter: 

ML," 4 r p  

'm2 = - 16E1, [ ,lcp - l ]  
where M = Z Hi h i  

Hi is  the proportion of the horizontal  force  carried by each  sub  frame 
calculated  as  a  proportion of the stiffness K2. 

Sub frame 1: 

Drop in the apex of rafter  span  1 due to  horizontal  load. 

0.425 X 1000 X 10000 (30165)2 x 4.20 = 16.8 mm 
1.. 'm2 = 

16 x 205000 x 2695 1 x lo4 

Sub frame 2: 

Drop in the apex of rafter span 2 due to  horizontal  load. 

0.280 x 1000 x 10000 (30165)2 x 4,,20 = l l .  lmm 
... $m2 16 X 205000 X 26951 X lo4 

Spread 

span 1: 

Full  span  spread = Ssm2 (Sin a, + Sin a;> = 16.8 (Sin 6" + Sin 6") 

= 16.8  (0.1045 + 0.1045) = 3.5 mm 

Half span  spread = dSm2 (Sina,) = 16.8 (Sin 6") 

= 16.8  (0.1045) = 1.8 mm 

span 2: 

Full  span  spread = dsm2 (Sin a, + Sin a*) = 1  1.1 (Sin 6" + Sin 6") 

= 11.1  (0.1045 + 0.1045) = 1.2 mm 

Half-span  spread = dsm2 (Sin a,) = 11.1 (Sin 6") 

= 11.1  (0.1045) = 2.3  mm 

)ate May 2001 

)ate July 2001 
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2.4 Axial forces for the energy calculation

The total of the axial loads in the columns is not affected by second-order
effects because of vertical equilibrium, so P2 = P1 which is taken as the mid-
height value calculated in 2.2 above.

Span 1:

LH col: take mid-height P1 = 126.9 kN

RH col: take mid-height P1 = 588.6 kN

Span 2:

RH col: take mid-height P1 = 128.3 kN

The rafter axial forces are affected by the drop of the rafters at mid-span.

Span 1:

Mid-span drop = 1414.7 mm

Increase in P2 = {l/ [1(ôa /ha)J1} = {1I[1—(1414.7/11577)}
— 1}

= 0.139

LH rafter: take mid-length P = 52.3 kN

Mid-span axial = 45.4, giving P/i increase = 0.139x45.4 = 6.3 kN

P2 = 52.3 + 6.3 = 58.6 kN

RH rafter: take mid-length P 54.5 kN

Mid-span axial = 47.6, giving P/i increase = 0.139x47.6 = 6.6 kN

P2 = 54.5 + 6.6 = 61.1 kN

Span 2:

Total Mid-span drop = 1396.6 mm

Increase in P2 = {1/[1(ôa /ha)]1} = {1/[1(1396.6 /11577)] — 1}

= 0.137

LH rafter: take mid-length P 55.1 kN
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2.4 Axial forces for the energy  calculation 

The  total of the axial loads in the columns is not  affected by second-order 
effects  because of vertical  equilibrium, so P2 = P ,  which is  taken as the mid- 
height  value  calculated in 2.2 above. 

span 1: 

LH col: take  mid-height P ,  = 126.9 kN 

RH  col: take mid-height P ,  = 588.6 kN 

Span 2: 

RH col: take mid-height P,  = 128.3 kN 

The  rafter  axial  forces  are  affected by  the drop of  the rafters  at  mid-span. 

Span 1: 

Mid-span  drop = 1414.7 mm 

Increase in P2 = { l /  [1-(6, /ha)]-l} = {1/[1-(1414.7/11577)] - 1 )  

= 0.139 

LH rafter:  take  mid-length P ,  = 52.3 kN 

Mid-span  axial = 45.4,  giving P A  increase = 0 . 1 3 9 ~ 4 5 . 4  = 6.3 kN 

P2 = 52.3 + 6.3 = 58.6 kN 

RH  rafter:  take  mid-length P ,  = 54.5 kN 

Mid-span  axial = 47.6,  giving P A  increase = 0.139X47.6 = 6.6 kN 

P2 = 54.5 + 6.6 = 61.1 kN 

Span 2: 

Total  Mid-span  drop = 1396.6 mm 

Increase in P2 = {1/[l-(da /ha)]-l} = {1/[1-(1396.6  /11577)] - l} 

= 0.137 

LH rafter: take mid-length P ,  = 55.1 kN 

)ate May 2001 

)ate July 2001 
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Mid-span axial = 48.2, giving Pu increase = 0.137x48.2 = 6.6 kN

P2 = 55.1 + 6.6 61.7 kN

RH rafter: take mid-length P1 = 53.3 kN

Mid-span axial = 46.4, giving Pu increase = 0.137x46.4 = 6.4 kN

P2 = 53.3 + 6.4 = 59.6 kN

2.5 Second-order Energy Summation A.6

The energy summation is required to calculate 2M following the methods in
A.2.2

211

Mid-span  axial = 48.2,  giving P A  increase = 0.137X48.2 = 6.6 kN 

P2 = 55.1 + 6.6 = 61.7 kN 

RH rafter:  take  mid-length P,  = 53.3 kN 

Mid-span  axial = 46.4,  giving P A  increase = 0.137X46.4 = 6.4 kN 

P2 = 53.3 + 6.4 = 59.6 kN 

2.5 Second-order Energy Summation 

The  energy  summation  is  required  to  calculate AM following the methods in 
A.2.2 

)ate May 2001 

)ate July 2001 
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Element for evaluation of Pc*phi*s*d(phi)

X-AXIS DEFLECTIONS
Deflections from the 'elastic frame
dxa
dxb
(dxb - dxa)
Deflections from the 'plastic" frame
From gravity loads
Sway of top of elastic column
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb
(dxb - dxa)
Column hinge horizontal displacement
dxa
dxb
(dxb - dxa)
From horizontal loads
Sway
dxa
dxb
(dxb - dxa)
Spread
dxa
dxb

00 00 116.6 0.0 2332 5830
0.0 116.6 2332 2332 5830 6996
0.0 116.6 116.6 233.2 349.8 116.6

00 39.8 398 0 0 39.8 398
39.8 398 398 398 39.8 398
39.8 0.0 0.0 39.8 0.0 0.0

6996 00
6996 699.6

0.0 699.6

39.8 00
39.8 39 8

0.0 39.8

The Steel
Construction
Institute

Job No: CDS139 Page 40 of 41
Rev

A

Job Title BS 5950 Portal

Subject Second-order Worked Example:
Silwood Park, Ascot, Berks SL5
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET
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AB BC CD ED DF FG dG Hd

00 321 71.9 00 887 115.6 1428 00
32.1 71.9 88.7 88.7 1156 142.8 142.8 142.8

32.1 39.9 16.8 88.7 268 27.2 0.0 142.8

0.0 1183.4 11834 11834 11834 1183.4 11834 00
1183.4 1183.4 1183.4 1183.4 1183.4 1183.4 1183.4 1183.4
1183A 0.0 0.0 0.0 0.0 0.0 0.0 1183.4

0.0 0.0 00 0.0 00 0.0 71 0 0.0
00 0.0 00 0.0 00 0.0 00 71.0
0.0 0.0 0.0 0.0 0.0 0.0 -71.0 71.0
AB BC CD ED DF FG dG Hd

00 00 1.8 00 35 4.7 58 00
00 1 8 3 5 3.5 4 7 5.8 5 8 5.8
0.0 1.8 1.8 3.5 1.2 1.2 0.0 5.8(dxb - dxa)

ITotal of (dxb- dxa) at collapse 1255.2 158.2 135.2 365.2 377.8 145.0 .71.0 2142.41

Y-AXIS DEFLECTIONS
Deflections from the "elastic" frame
dya 00 0.7 276.1 0.0 3.4 263.8 07 0.0

dyb 07 2761 3.4 3.4 2638 0.7 07 0.7

(dyb - dya) 07 275.4 -272.7 3.4 260.4 -263.1 0.0 0.7
Deflections from the "plastic" frame
Mid-span drop from gravity loads
dya 00 0.0 1121.7 0.0 0.0 1121.7 00 0.0

dyb 00 1121 7 0.0 0.0 1121 7 0.0 00 0.0

(dyb - dya) 0.0 1121.7 -1121.7 00 1121.7 -1121.7 0.0 0.0
Deflections from the "plastic" frame
Mid-span drop from horizontal loads
dya 0.0 0.0 16.8 0.0 0.0 11.1 00 0.0

dyb 0.0 16.8 0.0 00 11.1 0.0 00 0.0

(dyb- dya) 0.0 16.8 -16.8 0.0 11.1 -11.1 0.0 0.0
ITotal of (dyb - dya) at collapse 0.7 1414.0 -1411.2 3.4 1393.2 -1395.9 0.0 0.71

psi (angle from X axis) 900 6.0 -6.0 90.0 60 -6.0 90.0 90.0

[(dxb - dxa) at collapse]*Sin(psi) 1255.2 16.5 -14.1 365.2 39.5 -15.2 -71.0 2142.4
[(dyb - dya) at collapse]*Cos(psi) 0.0 1406.2 -1403.5 0.0 13856 -13883 0.0 0.0
phi * sat collapse 1255.2 1422.7 -1417.6 365.2 1425.0 -1403.4 -71.0 2142.4
Incremental rotn = d(phi) from mechanism 1.000 1.000 0.883 1.151 1.151 1.411 1.411 1.701

Shortening phi*s*d(phi) (modulus) 1255.2 1422.7 1251.6 420.4 1640.4 1980.7 100.2 3643.81

AXIAL FORCES
Pc for columns and rafters at ULS 126.9 52.3 54.5 588.6 55 1 53.3 128.3 128.3
Total midspan drop 1414.7 1414.7 1396.6 1396.6
Midspan height 11577 11577 11577 11577
Increase rafter mispan axial by {1/(1-drop/height) - 1) 0.139 0.139 0.137 0.137
Midspan axial 45.4 47.6 48.2 464
Increase in rafter axial 6.3 6.6 6.6 64
Design axial 126.9 58.6 61.1 588.6 61.7 59.6 128.3 128.3

llncremental energy = Pc*phi*s*d(phi) 159.2 83.3 76.4 247.5 101.2 118.1 .

WORK DONE ROTATING HINGES
Element for evaluating Mprd(phi) AB Ba ab bD Dc cG dG Hd

MprA 0 0 00 4040 0.0 0.0 404.0 454.0 00
MprB 0.0 404.0 404.0 4040 404.0 0.0 0.0 454 0

MprA + MprB 0.0 404.0 808.0 404.0 404.0 404.0 454.0 454.0
Incremental rotn = d(phi) from mechanism 1.000 1 000 0.883 1151 1.151 1.411 1.411 1.701

IMpr*d(phi) 0.0 404.0 713.3 465.0 465.0 570.2

12.9 467.51 Sum = 1266

Factor on lambda_p 0.686
lambda_p from first-order analysis 1.117
Iambda_M 0.766

640.7 772.2) Sum = 4031
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Element for evaluation of Pc'phi*s*d(phi) AB BC CD ED  DF FG dG Hd 

X-AXIS DEFLECTIONS 
Deflections  from  the  "elastic"  frame 
dxa 
dxb 
(dxb - dxa) 
Deflections  from  the  "plastic"  frame 
From  gravity  loads 

dxa 
Sway of top  of  elastic  column 

dxb 
(dxb - dxa) 
Spread 
dxa 
dxb 
(dxb - dxa) 
Column  hinge  horizontal  displacement 
dxa 
dxb 
(dxb - dxa) 

Sway 
From  horizontal  loads 

dxa 
dxb 
(dxb - dxa) 
Spread 

dxb 
dxa 

32 1 
0 0  

32.1 

0 0  
1183  4 
1183.4 

0 0  
0.0 
0.0 

0.0 
0 0  
0.0 
AB 

39.8 
0 0  

39.8 

0 0  
0 0  

32 1 71 9 
71.9 88  7 
39.9 16.8 

1183.4 11834 
11834 11834 

0.0 0.0 

0 0  116.6 
116.6 233  2 
116.6 116.6 

0.0 0 0  
0.0 0 0  
0.0 0.0 
BC CD 

39.8 39  8 
398 398 
0.0 0.0 

00 
18 

1 .8 
35 

0 0  
88.7 
88.7 

1183  4 
1183.4 

0.0 

233  2 
0.0 

233.2 

0 0  
0.0 
0.0 
ED 

0 0  
39  8 
39.8 

0 0  
3.5 

1156 142.8 
88  7 115.6 

26.8 27.2 

11834 1183.4 
11834 11834 

0.0 0.0 

233  2 583 0 

349.8 116.6 
583 0 6996 

0 0  
0 0  

0.0 

0.0 
0.0 

DF 
0.0 
FG 

39.8 39  8 
39.8 39  8 
0.0 0.0 

4 7  
35 4.7 

5.8 

1428 00 
142.8 1428 

0.0 142.8 

1183  4 00 
11834 11834 

0.0 1183.4 

699 6 00 
6996 699.6 

0.0 699.6 

71 0 
0 0 71.0 

0.0 

-71.0 71.0 
dG  Hd 

39.8 00 
39.8 39 8 
0.0 39.8 

58 00 
58 5.8 

(dxb - dxa) 0.0 1.8 1.8 3.5 1.2 1.2 0.0 5.8 
ITotal of (dxb - dxa)  at  collapse 1255.2 158.2 135.2 365.2 377.8 145.0 -71.0 2142.41 

Y-AXIS  DEFLECTIONS 
Deflections  from  the  "elastic" frame 
dya 
dyb 
( W  - dya) 
Deflections  from  the  "plastic" frame 
Mid-span  drop  from  gravity loads 
dYa 
dyb 
(dyb - dya) 
Deflections  from  the  "plastic" frame 
Mid-span  drop  from  horizontal loads 
dYa 
dYb 

0 0  
0 7  
0.7 

0 0  
0 0  
0.0 

0.0 
0.0 

276 1 
0.7 

275.4 

0.0 
1121  7 
1121.7 

0.0 
16.8 

276.1 

-272.7 
3.4 

1121.7 

-1121.7 
0.0 

16.8 
0.0 

0.0 

3.4 
3.4 

0.0 
0.0 

0.0 

0.0 
0 0  

263  8 
3.4 

260.4 

0.0 
1121  7 
1121.7 

0.0 
11.1 

263.8 

-263.1 
0.7 

1121.7 

-1 121.7 
0.0 

11.1 
0.0 

07 
0 7  0.7 

0.0 

0.0 0.7 

0 0  0.0 

0.0 0.0 
0 0 0.0 

0 0 0.0 
0 0  0.0 

(dyb - dya) 0.0 16.8 -16.8 0.0 11.1 -11.1 0.0 0.0 
ITotal of (dyb - dya)  at  collapse 0.7 1414.0 -1411.2 3.4 1393.2 -1395.9 0.0 0.71 

PSI (angle  from X axts) 
[(dxb - dxa)  at  collapse]'Sin(psi) 
[(dyb - dya)  at  collapse]'Cos(pst) 
phl * S at  collapse 

1255.2 16 5 -14.1 365.2 39.5 -15  2 -71.0 2142.4 
90 0 6.0 -6.0 90.0 6 0 -6.0 90.0 90.0 

1255.2 1422.7 -1417.6 365.2 1425 0 -1403.4 -71.0 2142.4 
0.0 1406.2 -1403.5 0.0 13856 -1388  3 0.0 0.0 

IShortening = phi's'd(phi) (modulus) 
Incremental  rotn = d(phi)  from  mechanism 1.000  1.000  0.883  1.151  1.151  1.411  1.411  1.701 

1255.2 1422.7 1251.6 420.4 1640.4 1980.7 100.2 3643.81 

AXIAL FORCES 
Pc for columns and  rafters  at ULS 126.9  52.3  54.5  588.6 55 1 53.3  128.3  128.3 
Total  mldspan  drop 
Midspan  height 

1396 6 1396.6 
11577  11577 

Increase  rafter  mispan  axlal by (l/(l-droplheight) - l} 
Midspan  axlal 

0.137  0.137 
48.2  46  4 

Increase  in  rafter  axial 6.3 6.6 6 6  6 4  
Design  axial 126.9 58.6  61.1 588.6 61.7 59.6 128.3 128.3 

[Incremental  energy = Pc'phi*s"d(phi) 159.2 83.3 76.4 247.5 101.2 118.1 12.9 467.51 Sum = 

WORK  DONE  ROTATING HINGES 
Element  for  evaluatlng  Mprd(ph1)  AB Ea ab bD DC cG  dG  Hd 
MprA 0 0  0 0  4040 
MprB 

0.0 0.0 404.0 454.0 0 0 
0.0 404.0  404.0 4040 404.0 0.0 0.0 454 0 

MprA + MprB 0.0 404.0  808.0  404.0 404.0  404.0 454.0  454.0 
Incremental  rotn = d(phi)  from  mechanism 

IMpr*d(phi) 
1.000 1000 0.883  1151 1.151  1.411  1.411 1701 

IFactor on lambda D I 06861 

1414.7 1414.7 
11577 11577 
0.139 0.139 
45.4  47.6 

0.0 404.0 713.3 465.0 465.0 570.2 640.7 772.21 Sum = 

lambda  p  from  first-order  analysis I 1.117 
lambda  M I 0.766 

_. 

1266 

4031 
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2.6 Load factor at failure, AM A.6

P2 q5sdçb = 1266 5
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(P 5 s dq5), /2 = 1-M
E(Mprdcb)

2M / =
[1

)} = 0.686

= 0.686 x 2, = 0.686 x 1.117 = 0.766

This frame exceeds the /z/l000 limit for the sway-check method by a factor of
about 3. The above calculations demonstrate that such a flexible frame has a
serious reduction in capacity from in-plane stability effects.
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